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ABSTRACT

This thesis deals with improving the miss distance of a missile, with imaging seeker(s),
by utilizing dynamic image processing. In an encounter with a missile, a target wies to
avoid the missile by performing an evasive maneuver when the missile is at a relative dis-
tance which maximizes the miss distance. Dynamic image processing permits us to identify
the evasive maneuver of the target by estimating its acceleration in magnitude and direc-
tion. This thesis studies methods of utilizing this additional information about the target’s
behavior in crder 1o improve the missite’s performance. First the proportional navigation
guidance law is explored in order o verify ifs advantages and weaknesses. Then, methods
of obtaining the time dependent 3«1 movernent of & twwget from its image plane feature
point correspondences are derived. Tie 3-D components of the target’s acceleration are ob-
wiined by using a Kalman filter. Missiles with two cameras, one camera and one seeker (ra-
der or IR), and only one camers are considered. Methods to get stereo vision by using the
one camera plus one seeker setup and the single camera setup are proposed. Advanced
guidance laws, namely advanced proportional navigation and optimal guidance are de-
rived, for a 3-D environment. A three dimensional simulation program is developed using
classical proportional navigaticn, advanced proportional navigation, and optimal guidance.

The engagement is simulated using state variable design and the performance of the guid-

ance lews is compared. | Accesion For
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I. INTRODUCTION

The U.S, as a result of the highly effective kamikaze attacks during World War II on
U.S vessels, initiated the development of the first tactical missile (Lark guided missile).
Since that time, proportional navigation guidance has been used in virtually all the world’s
endoatmospheric tactical radar, infrared(IR), and television(TV) guided missiles.
Proportional guidance works well not only for predictable targets, but also for highly
responsive ones (i.e. targets executing evasive maneuvers). The proportional navigation
guidance technology currently in use appears to be adequate, if the effective time constant
of the guidance system is short in comparison with the flight time and, if the missile has
considerable acceleration advantage over the target. The popularity of this interceptor
guidance law is the result of its simplicity of implementation, and effectiveness. Although
proportional navigation was apparently kriown by the Germans during World War II, no
applications of it were reported. In the U.S, this guidance law was studied under the:
auspicious of the U.S Navy. Proportional navigation was originally conceived from
physical reasoning. The mathematical derivation of the “optimatility” of proportional
navigation came more than 20 years later.

This research develops a three dimensional missile/target simulation using three
techniques of interceptor guidance, namely classical proportional navigation, augmented
proportional navigation and optimal guidance. The primary research goal is to improve the
miss distance of a missile with imaging seeker(s) by utilizing dynamic image processing.
The existent dynamic image processing algorithms can be used to estimate motion
parameters of the target. This additional information, about the target behavior, will be
included in the proportional navigation homing loop in order to increase the missile
percentage of kill by improving the final miss distance. Information about the target motion
is especially important in the final phase of the engagement, given that an evasive
maneuver performed by the target creates appreciable miss distance that may preclude a

target kill. In an encounter with a missile, a target tries to avoid the missile by performing




a evasive maneuver when the missile is at a relative distance that maximizes the miss
distance. A simulation of the adjoint model of the linearized homing loop permits us to
obtain miss distance projections as a function of flight time or, if preferable, as a function
of the time to go. The target can induce the most miss distance by executing an evasive
maneuver at a short time to go. More precisely, the optimal evasion from the target “point
of view” would be a series of maneuvers at the times of flight that, by superposition,
produce the most miss distance. Estimating the target maneuver and incorporating this
information into the guidance control input is perhaps the difference between success and
failure.

Chapter I introduces the idea of proportional navigation and how the actual guidance
law is developed. Chapter III deals with estimating the target motion parameters by using
two perspective views. In Chapter IV, the augmented proportional navigation and optimal
guidance will be derived. Also in this chapter, a tridimensional missile/target simulation is
developed using classical proportional navigation. Subsequently, the target’s estimated
motion parameters will be incorporated in the tridimensional engagement by using
augmented proportional guidance and optimal guidance. Chapter V consists of actual
simulation results. The different control laws will be tested and compared by producing

miss distance projections for different evasive maneuvers. Finally, conclusions and

recommendations follow in Chapter VI. All computer simulations are developed using

Matrix Laboratory(MATLAB).




II. FUNDAMENTALS OF TACTICAL MISSILE GUIDANCE

A. GENERAL

Proportional navigation guidance (PROPNAYV) commands the missile to turn at a rate
proportional to both the angular velocity of the line of sight (LOS) and the closing velocity.
The constant of proportionality is a unitless designer chosen gain (usually in the range 3-5)
known as the effective navigation ratio/constan:. Mathematicaily, the guidance law can be

stated as
u, =NV, (Eq 2.1)
where u,, is the acceleration command which is perpendicular to the instantaneous LOS. N

is the effective navigation constant V., is the closing velocity along the LOS, and A is the
LOS angle (in rad). The overdot indicates the time derivative.

If the navigation ratio is greater than 1, the missile will be turning faster than the LOS,
and thus the missile will build up a iead angle with respect to the line of sight. For a constant
velocity missile and target the generation of this lead angle can put the missile on a collision
course with the target (zero angular velocity of the line of sight). If N = 1 then the missile
is turning at the same rate as the LOS, or simply homing on the target. If N < L, then the
missile will be turning slower than the LOS, thus contirually falling behind the target,
making an intercept impossible. In order to completely undersiana the physics of
proportional navigation guidance it is necsssary to analyze pursuit and constant bearing

guidance.

B. PURSUIT GUIDANCE

For pursuit guidance, the missile velocity vector is always directed toward the target
as illustrated by Figure 2.1. The missile is then constantly heading alnng the line of sight
from the missile to the target and its path describes a pursuit path. Given that the rate of turn

of the missile is always equal to the rate of tura of the LQS, “pure” pursuit (without leading

angle) paths are highly curved. This requires the missile to use significant acceleration.

Pt
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Since the signal processing is limited to continuously lecating the target and changing the
missile flight path angle, the on-board avionics are relatively simple. As will be
demonstrated later, this king of classical guidance law is a special case of PROPNAYV when

the effective navigation ratio is equal to 1.

Target 3 4
g W-H O

8, = missile heading angle
A = LOS

Missile

Innertial reference

Tigure 2.1 Pursuit Trajectory

ri.gure 2.2 shows ths geometry of the pursuit guidance law. V, and V, are respectively -

the micsile and target velocites, 9, and 0, are respectively the missile and target flight

path angles, o is the difference between ths LUS angle and the target flight path angle, and




r is the instantaneous separation between missile and target. Inertial and missile translating
coordinate systems are also shown in the figure.

The velocity of the target with respect to the missile is given by:

v=V, -V (Eq2.2)
b= ré, +rfeg. (Eq2.3)
x, Vr
8,
-~ Target

—

A Inertial coordinate system

Figure 2.2 Pursuit Guidance Geometry

Writing the velocity of the target and missile in term.s of the polar unit base vectors ¢, and

ég, We get:




V, = V,cosaé, =V sina éq, (Eq24)

Vi =V, 2. (Eq 2.5)
Equating equations 2.2 and 2.3 and uring equations 2.4 and 2.5, we obtain:
F=Vicosa ~V (Eq 2.6)
r8, = -V,sina,. (Eq2.7)
From Figure 2.2, we see that:
0, = a,+0, (Eq2.8)
Considering a non responsive target:
0, =&, (Eq2.9)
The missile acceleration & is obtained by differentiating equation 2.5:
= Ve, +V,8, &, (Eq 2.10)
given that from analytical mechanics:

dé’-ade 2.11
Q= Pegp (Eq 2.11)

Assuming constant speed (magnitude of the velocity vector), the acceleration crommand

will be the normal comporent of the acceleration which will be designated u,,:

Uy = Vb, = Vyh = V,a, (Eq 2.12)

where ¢, isa time function.

C. CONSTANT BEARING GUIDANCE

The accelerations required by the pursuit guidance law can be reduced by aiming the
missile ak:ead of the target by using a lead angle. In this case the missile raverses a straight
line to a collision with & constant speed non maneuvering target, as shown in Figurs 2.3,

The missile converges on the target by using a constant LOS angle (A = constant). Since the

rate of change of the LOS angle is zero throughout the flight, the lateral accelerations are




zero. If the target marnieuvers evasively, by changing its velocity vector in direction and/or
in magnitude, a new collision course must be computed and the missile flight path altered
accordingly. The constant bearing geom...ry is shown in Figure 2.4,

We wish to find the missile control input necessary to responde to prescribed target

accelerations. The ielative velocity is given by:
V= V=V, = ré, +riég. (Eq 2.13)
The target and missile absolute velocities are:
V: = Vicosaé, -V sina g; (Eq 2.14)
Vi = Vycosa, &, =V, sina_2,. (Eq 2.15)
Subtracting equation 2.14 from equation 2.15 and equating the result to 2.13, we find that:
F = V,cosa, -V, cosa ; (Eq 2.16)

r

I

~V,sina, + V,sinat, . (Eq 2.17)

The requirements for a constant bearing guidance are:

A=0; : (Eq 2.18)
#<0. (Eq2.19)
Using equations 2,17 and 2,18, we get:
. sinal,
Slnd.m = ~‘—/———V,, (Eq 220)
m
From equations 2.16 and 2.19:
cosa,

cosat,, > ——V,. (Eq221)

i




Target 1 2 3
- & 4 i é .
A
i
/
Misgi_!g’i/ ”\Pn Inertial reference
Figure 2.3 Constant Bearing Guidance Trajectory

We may use equation 2.20 to obtain a expression for cosa, by squaring the equation and
\,1\.3

using the fundamental trigonometric entity. Doing this, we get:

1
~|—
~
_gi
[ %]
N
L )]
~

cosa, [ v N
._.V ;= L V_z -1+ U.A)bu.m)
m m




a, _»V,
3]

" Target

}

777 7 Inertial coordinate system

X

Figure 2.4 Constant Bearing Geometry

Substituting this expression into equation 2.21, we obtain:

1
2

% 1
cosat, > [(Vz‘— - 1) + (cosot,,) zJ , (Eq2.23)
m

This expression is satisfied if:




2

-~

1%
— =1<02V, >V, (Eq2.24)

m
Thus, for this guidance law to be effective the missile must have speed advantage relative
to the target.

The missile and target accelerations can he computed from Figure 2.5, which expands

the acceleration in terms of tangential and normal components. The velocity vector of a

body (missile or target) is described by:

At T T s S

V= Vi, (5q2.25)

where T represents the tangential unit vector to the trajectories reprasented by the dashed

lines in the figure. The figure shows the response of the missile to a evasive target. We aie
interested in computing the relationship between the missile conirol inpui and the target

maneuver.

Figure 2.5 Constant Bearing Normal Acceleration
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The acceleration of the body is given by:

dt
p (Eq 2.26)

i=-—- = —t(V'c) = V't:+Vd

For smali values of Ay it approaches the magnitude of AT and the direction of AT becomes

d
perpendicular to the direction of t. It follows that the derivative C—jt_- is of magnitude 1 and
¥

perpendicular to T. Then this derivative is the unit normal vector 7. The time derivative dr

is found by using the chain rule, as foliows:

— = =hy=n8. (Eq 2.27)

Assuming constant speed, the missile and target accelerations are always in the direction of

the respective unit normal components and can be written as:

by = ApV,0. (Eq 2.28)
i, = V.8, (Eq 2.29)
since,
6, =o +A, (Eq 2.30)
and given that A = 0,
8, = &y (Eq 2.31)
b =Vt . (Eq 2.32)

The variable, u,, is the missile acceleration magnitude. Differentiating equation 2.20, we
find &, and then u,, in terms of the target evasive acceleration:

cosQ, €3]

a (1) = [ _.T).v,}a,(z), (Eq 2.33)

Vpcosa, (

where the time factor is included. Additionally,

11




a4, (1)

a (1) = 6,(1) = — (Eq 2.34)
t
where 1, () is the target acceleration magnitude. Hence:
cosa,(t) } 23
llm(l\) = (C—Oga:(i;-/ ur(f) . (Eq . 5)

From this last equation and equation 2.20, we conclude that the LOS will maintain its
direction in space, keeping the missile on a collision course with the target provided that
the missile’s and target’s kinematics normal to the LOS behave likewise. Additionally,
from equation 2.21, the closing velocity (component of the relative velocity along the LOS)
must be positive. Constant bearing guidance requires the knowledge of the heading and
velocity of the target, the line of sight, and the velocity of the missile, which dictates a more

complex signal processing system than fer pursuit guidance.
D. PROPOKTIONAL NAVIGATION GUIDANCE

1. In Search Of The Proportional Navigation Concept

Pursuit guidance tries to continuously point the missile to the target, resulting a
highly curved path and very large accelerations. The guidance law is only interested in the
present posiiion of the target; lacking information about the target kinematics. This lack of
information precludes the missile from building a lead angle, resulting in a somewhat
ineffective guidance law. Constant bearing guidance points the missile to the future
position of the target, resulting in a straight line collision path with a non maneuvering
target. Before pointing the missile, the guidance system needs to know the heading and
velocity of the target to compute the target’s future position. So, this method is not
practical, especially when dealing with targets with evasive capabilities.

The advantage <f proportional navigation is that it provides a practical method of
approximating a constant bearing course to a maneuvering target. PROPNAV tries to
emulate the constant bearing guidance command by using LOS rate information from an

on - board electromagnetic or ¢lectro - optic device.

12




A missile using constant bearing guidance only needs a control input when it is
necessary to change its heading at the begir ning of the flight and afterwards if the target

maneuvers. The form of this corimand signal was derived and is repeated here for

convenience:

i, =V,0, h. (Eq 2.36)
From the proportional navigation geometry in Figure 2.6

0, = a,+A (Eq 2.37)
Taking its derivative:

6, = &, +A. (Eq 2.38)

The acceleration of the missile (assuming constant speed) is:
= V8,7 = V, (&, +4) A, (Eq 2.39)
Our goal is to emulate equation 2.36 by using a linear wansformation between the LOS rate

A and the missile’s angle rate & . Set, for example:

A= (Eq 2.40)

Equation 2.39 becomes:

_ . i .. N .
Uy = V(o + F:Ta"‘)n = meamn. (Eq2.41)

By letting N be large this equation approaches equation 2.36 for a constant bearing path
(collision course). We are interested in the relationship between the LCS rate and the flight
path angle rate. Using equations 2 38 and 2.40, we find that:
6, =&, +A= (N-1)A+d = Ni; (Eq 2.42)
fy = NV _Ad. (Eq 2.43)
Therefore, PROPNAYV is & practical guidance law that emulates constant bearing guidance

by issuing control commands that are proportional to the LOS rate.

13




Pursuit guidance is a particular case of proportional navigation when N =1
(compare equations 2.12 and 2.43). As we have seen, constant bearing guidance is obtained
by letting N be large (theoretically infinity). However, large gains in the amplifiers also
cause large amplifications of noise; therefore N is usually restricted to less than 6.
proporticnal navigation paths are less curved than pursuit paths, but more curved than
constant bearing collisions. PROPNAYV anticipates the future position of the target without
actually computing it. Due to this property this guidance law presents a higher degree of

responsiveness than other guidance laws.

2. Proportional Navigation And Zero Effort Miss
In Figure 2.6 the missile, with velocity magnitudeV, , is heading at an angie of

L + HE with respect to the line of sight. The angle L is known as the missile lead angle and
is the theoretically correct angle for the missile to be on a collision triangle, with the target.
If the missile is launched in a collision triangle with a non evasive targst, no further
accelerations commands will be required to hit the target. The angle HE is known as the
heading error, and represents the initial deviation of the missile from the collision triangle.

In practice, the missile is usually not launched exactly in a collision triangle, since
the expected intercept point is not known precisely. The location of the intercept point can
only be approximated, because we do not know in advarnce what the target will do in the
future. In fact, that is why a guidance system is required. The point of closest approach of
the missile and target is known as the miss distance. Guidance system lags or subsystem
dynamics will cause miss distance. The simplest proportional navigation homing loop is
shown in Figure 2.7 where we have linearized the missile/target engagement by using the
small angles approximation (i.e. we assume that the flight-path angles and the line of sight
angle are small in order to linearize the engagement geometry. Then, the cosine functions
are approximated by 1 and the sine and tangent functions by their arguments). In a

linearized analysis, the range equation is approximated by the following time varying

relationship:




r = VC(IF— [) = Llctgo (m 2'44)
where V. is the closing velocity, f7 is the total 1light time, and ¢, (time to0 go) is the time
until the end of the flight. As shown in [Ref. 1] the miss distance will always be zero in a
zero-lag proportional navigation homing loop. The PROPNAYV guidance law used in the
homing loop of Figure 2.7, and also the most used in the literature, is not the one derived

in equation 2.43, but the foilowing one:
i, = NV A, (Eq 2.45)
where i, is the unit vector normal to the LOS. Then, the control input is issued

perpendicular to the instantaneous LOS. It can be easily demonstrated that this last
expression maintains the proportionality between the missile flight path angle and the
angular LOS rate. In {Ref. 2], Guelman contrasted “pure” PROPNAV (described by
equation 2.43, wherein command accelerations are normal to the missile velocity vector)
and “tue” PROPNAYV (described by equation 2.45, wherein command accelerations are
normal to the line of sight). He concluded that the later law would result in intercept only
if the initial conditions werc within a well-defined subset of the parameter space. In the
homing loop of Figure 2.7, the seeker provides the LOS rate by taking the derivative of the
geometric LOS angle. The noise filter processes the noisy LOS rate measurements to
provide an estimate of the LOS rate. The guidance command is generated using the “true”
PROPNAYV guidance law. The guidance system must cause the missile to maneuver, by
using moving control surfaces. The seeker and the guidance system dynamics are described
by differential equations.

The presence of delays in the homing loop creates miss distance. In the presence
of guidance system dynamics, the heading error (FE) and target maneuver (target evasive
acceleration) are the two sources of miss distance. The PROPNAV guidance law can be
expressed in terms of the «ero effort miss. The zero effort miss is not only useful in

explaining PROPNAYV but is also useful in deriving more advanced missile control laws.




Missile

Figure 2.6 Proportional Navigation Two Dimensional Engagemient

The zero effort miss is the distance the missile would miss the target if the target

continued alcag its present course and the missile made no further corrective maneuvers.

Using Figure 2.5:
ZEM, = r +v 1, (Eq 2.46)
ZEM, = r vl (Bg 2.47)
where ZEM represents the zero effort miss, r is the missile/target relative disiance, and v is -

the missile/target relative speed. The subscript (x or y) represent the projection of the

respective quantity over that coordinate axis.
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The ZEM perpendicuiar to the LOS, is given by:
ZEMp, og = — ZEM sinA + ZEM cos}. (Eq 2.48)

-
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Using equations 2.46 through 2.43, we obtain:

teo (rev, = ryvx)

Rt S PURAD AR i gy o Ry i)

ZEMp; o5 = - . (Eq 2.49)
The LOS is:
i A = atan (-—'—). (Eq 2.50)
? . taking its derivative, we obtain:
: rv,~ryv

. A= X rE (Eq2.51)
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Comparing equations 2.49 and 2.51. the LOS rate may be expressed in terms of the

component of the zero effort miss normal to the LOS:

ZEM ZEM
I (g 2.52)
r go Vct;go

where r = V.l,,. Thenthe PROPNAV gu.dance command niagnitude can b expressed in

terms of the ZEM perpendicular to the LOS:

N ZEMp o5

W, = 5 : (Eq 2.53)
go

Thus, we conclude that the PROPNAYV acceleration command that is perpendicular to the
LOS is not only proportional to the LOS rate and closing velocity but is also proponior.al
to the zero effort miss and inversely proportional to the square of time tc go. The efficiency
of PROPNAY guidance is a direct consequence of this dynamic property. This is, of course,

a very powerful concept.
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1. DYNAMIC IMAGE PROCESSING

A. GENERAL

A missile that uses a TV camera and a seeker (radar or IR), or instead, two TV cameras
is considered. A setup with only one TV camera is also studied. The seeker and the camera,
or the two cameras, can be located on the missile’s nose separated by a transversal distance
d. The secker plus the single camera setup, permits the missile to emulate the stereo vision
of ihe two cameras setup. It has the additional advantage of tracking the target at the early
stages of the engagement using solely the seeker’s LOS angle information. This system
permits us to compute the 3-D target motion by using a two perspective views motion
algorithm and the target’s spatial direction and range provided by the seeker. The two

cameras setup permits us to use image plane locations in two views, corresponding to a

single object point at times t, and t,, to determine the 3-D object (target) locations X o (t))

and X, (t,) . The one camera setup also permits us to determine the motion of the target, as

a function of time. This is done by using a two perspective views motion algorithm and
ruessing the target’s physical dimensions to estimate its absolute depth. In this way, we
emulate binocular vision. The estimated 3-D motion of the target and the image sampling
time permit us to estimate the target velocity and acceleration components in a preselected
3-D rectangular coordinate system. The acceleration information can subsequently be
injected into the control algorithms, which will be developed in the next chapter, to improve

the miss distance.

1. Scene (3-D) - Image (2-D) Geometric Considerations

Mathematically, we can express the transformation of object point locations (3-
D) to image plane locations (2-D) by the following generally noninvertible geometric

transformation:

X =8X,(0,...). (Eq 3.1)




The modeling of the imaging process, described by the above equation, relates object points

X, (¢) in the 3-D scene to image points X;(¢) in the image plane. The function g depends
on the imaging geometry, lens model, and coordinate system choices.

The imaging model is derived by considering the pinhole camera model shown in

Figure 3. 1. The point X, lies over the camera‘s optical axis at a distance f from the image
plane. The figure shows two distinct coordinate systems, an image plane coordinate system
and a global coordinate system. Qur first goal is: assuming the simplified camera model

shown in Figure 3.1, derive the transicrmation described by equation 3.1 where the object

point X, (¢) can be measured from either coordinate system.

Image plane

Image Plane
coordinate system

Yy

Xg

Figure 3.1 Scene - Image Transforzniation
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The object/image relationship defined in equation 3.1 is defined by a transformation
matrix. Independent of the camera model, this transformation matrix is the product of two
matrices. The first matrix describes the object - image coordinates transformation, and is
derived by assuming that the 3-D object coordinates are measured relatively to the image
plane. However, if the object coordinates are measured relatively to the global coordinate
system, a second transformation matrix relating the two coordinate systems have to be
defined. This matrix is the composite of the relative rotation and translation between the
coordinate systems. It describes the coordinates transformation between the two coordinate
systems.

To identify the transformation defined by equation 3.1, the two matrices are
derived for the simplified camera model of Figure 3.1, Monocular vision (only one camera)

is incapable of determining absolute depth:. However, any imaged point is constrained to
correspond to an object point located anywhere on the 3-D line segment containing X; (¢} ,-
X, and X, (1)

Assuming that the coordinate systems for both object and image points, are

coincident and centered in the image plane, the above colinear points are related by:

kX1 =X = (Re=X,(0). (Bq3.2)
Expe (ding this equation yields:
T ' T
k{[0y, z] ~[fod'} = Uou]r—[xoyozo} , (Eq 3.3)

where the superscript T is the transpose operator. The time index ¢ has been dropped to

simplify the notation. Equation 3.3 yields:

(x,=H)  x,
k = =21, Eq3.4
7 7 1 (Eq3.4)

Yo ¥
Y=g = F=x) (Eq3.5)
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Zo Sz,
z. =

P TY T TRy (Eq36)

The minus sign in the second expression of the two last equations, stands for the image
inversion originated by the back - projection model of Figure 3.1. The matrix representation
of the nonlinear equations 3.5 and 3.6 is:

[0 f00|

)?,-=Mffo=L0 0f0
-100 /]

-

X,. (Eq 3.7)

The last equation uses homogeneous coordinates (a technique also used to develop
computer graphics), for image and object points. The homogeneous coordinates are defined
by multiplying the physical coordinates by an arbitrary constant ¢ and including the

constant as an additional element of the vector:

%= [cy,. ¢z, .:]T. (Eq 3.8)

and

- r
Ro=1x,9,2,1] - (Eq3.9)
Note that in equation 3.9 the arbitrary constant is equal to 1. The object - image point
transformation is defined by equation 3.7, where it is implicitly assumed that x; = 0.

Rewriting equations 3.5 and 3.6, we conclude:

Fixing the image plane coordinates y; and z; the above equation describes the 3-D line over

S R
alleil

£

he 3 -D object is located. Therefore, while the transformation in equation 3.7 is not
invertible, choice of a specific image point constrains corresponding object points to lie
along a 3-D ray (shown in Figure 3.1).

If the object points are measured relatively to the global coordinate system, the

matrix relating the two coordinate systems has to be computed. This transformation matrix
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is the product of a succession of matrices. Individually, each of these matrices defines a
rotation or translation of the image plane coordinate system relative to the global coordinate

system. The succession of transformations may be of the form:
%, = (T2R2R1T1) X, (Eq 3.11)

where X, and }?ﬁ define the homogeneous object coordinates in the image plane and global
coordinate systems, respectively. Here the furst transformauon is the transiation T1
followed by the rotation R1, etc. The composite of the above transformation may be defined
by:

Hy,i= T2R2RITI. (Eq3.12)

Then, the general relationship between object points measured relatively to any user

selected coordinate system and the image plane points is:

R = MH,_ X;. (Eq 3.13)
For the simple case of only a translation as shown in Figure 3.1, we see that in object
coordinates:
- g . T i
Xo = X5~ d,dyd] . (Eq 3.14)
Homogeneous coordinates enable us to represent the last relationship using a translation
matrix:
100-d,
5 5 010-d,¢
X =H %= y %8 (Eq 3.15)
©ERT o0t -d) ¢
000 1]

2. Stereo Vision (2 Cameras)

Monocular vision disables depth perception. In fact, due to the impossibility of
inverting the 3 X 4 matrix Q = MH, _,; obtained in the last section, we are constraired to

the determination of image points from object points. However, we are interested in
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determining the 3-D locations (measured relatively to a global coordinate system). One
approach to solve this problem is to use more than one camera. One of our proposals, is to
use two cameras in the missile’s nose separated by a distance 4 emulating, in some way,
the human visual system.

Initiaily, we assume the simplified two dimensional diagram of the stereo vision
in Figure 3.2. The scene consists of a 2-D surface. As shown in the figure, a point on this
surface is projected onto the two image planes (IP1 and IP2). In general the two centers of
projection differ in length (f; and f,). It is assumed that the user selected global coordinate
system, to measure the object coordinates, is coincident and centered in the image plane
IP1. The coordinate x; is shown in the figure, the coordinate y; is perpendicular to x; and

in the plane of the page. The object point may be determined using the two projected points,
one in each camera. '

The relationship between the homogeneous coordinates of the object point,
measured relatively to the image plane IP1, and the homogeneous coordinates of the

corresponding image point is:

: 1 0 Ofix
[cxu} = o 1, yg- (Eq 3.16)
¢ fi J 1

The object coordinates measured from IP2 are related to the object coordinates measured

from IP1 by the following relationship;
Y APl
Xfw = X{; +B|’ (Eq 3.17)

or, in homogeneous coordinates:

10d

~IP2 ~IPl

X =lo10%0" (Eq 3.18)
001




2.D Suface Y0 = ¥o Y

xll‘ fl x12
b 0 IP1 0 IP2
€ d

Figure 3.2 Two Dimensional Stereo Vision

Then image points in IP2, denoted x;,, may be related to object points measured relatively

to the global coordinate system by:

- 10 0ofiod|x]
r"iz} - ’0 1 [o IJ 9, (Bq 3.19)
“I tom

(1]

Using equations 3.16 and 3.19 the following relationships in object coordinates are

b

obtained:
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= 7 , (Eq 3.20)
x )
. _‘?Ez_ Yol _4 (Eq 3.21)
fa
Equating these two equation the object’s depth y, may be found:
Sifa (kg =xy = d)
= . iq3.22

& fixig =fa%; (Fa3.22)

The object point x , may be found, from either equation 3.20 or equation 3.21. Hence, using
two image planes permits us to determine the object point depth v, from its corresponding
image points. This was proved for a 2-D surface. Next we are going to see how to do it in
a 3-D environment.

Equation 3.13, defines the relationship between the scene three dimensional
points and the correspondent two dimensional image points by using a matrix of
transformation:

Q= MHg_”-. (Eq 3.23)
H, _, ;is the coordinate systems transformation matrix which depends on the rotations and/
or translations of the image plane coordinate system relative to the user selected global
coordinate system. M is the object - image transformation matrix, which is a function of
the imaging geometry and lens model. The Q matrix is a non - invertible 3 X 4 matrix
(assuming homogeneous coordinates) and may be generically represented by:
911 9124913 ‘1141

C = |93 922 923 924/ (Eq3.24)
931 932 933 ‘r’34j

The missile must have sufficient processing capability to find this matrix in real time. The

object - image transformation matrix M is generally invariant (however zooming the scene,

for example, changes its value). The coordinate systems transformation matrix H g - must
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be dynamically updated as the missile/target engagement proceeds. The selected global
coordinate system for missile guidance simulation purposes is a ground coordinate system
which will be presented in the next chapter. For full dimension (3 -D) stereo vision, the two

cameras arrangement may be described using homogeneous coordinates as:

Xie = Q°Xo, (Eq 3.25)
where the index ¢ = 1, 2 refers to the cameras. Since each of these two matrix equations
(one for each sensor) represents two equations in physical coordinates, we obtain four

equations and three unknowns by using the two cameras stereo arrangement. The matrix

equation 3.25 can be explicitly written for each sensor as:

- [
[ Yo
Cyit q111 9112 9113 9114 ‘ g
cizy| = 9121 i 9123 91 | (Eq 3.26)

-

€1 J 9131 9132 9133 9134) | “0
1

—__"

and,

-
\02)’1'2 q211 4212 9213 4214 )
€222 = 4221 9222 9am3 G224 |7¢)- (Eq 3.27)
L2 4231 9232 9233 9234) | “0f

The index of each matrix element is composed by three numbers, the first is the camera
number and the next two represent the element position into the matrix. Each of these two
matrix equations generates two equations in physical coordinates. To find these equations,
the arbitrary constants (¢ and ¢,) have to be calculated. Then, each of the constants is
substituted into the two remaining matrix equations. Finally, regrouping terms as
coefficients of x&, y? and z8 , a set of four equations is obtained. Performing this procedure

to obtain the furst physical equatior from the matrix equation 3.26, we get:

¢y = q131%8 +q1395 + 413325 + 41340 (Eq 3.28)
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substituting this expression into ¢;y,;,, and regrouping terms, we obtain:
(Eq 3.29)

((qyq = ai) X5+ (qyg ~4132v:) Yo + (4113~ 4133901) 25 = qy3a¥i =4 114)

The set of four equations and three unknowns is written compactly in matrix notation as:

PX! = F (Eq 3.30)
or
4111 - di31Vin 9121~ 9132V 4113 ~ 4133V d134 Yiy — 4114
- Z; - z - 2ol Z, -
di121 49131251 9122 913dn 9123 ~ 9133%0 X5 = 4134 21~ 49124 (Eq 3.31)
d211 = 9231Y2 9212~ 92322 4213 — 4233912 4234 Yiz ~ 4214
4221 = 4231512 9222 = 4232212 9223 ~ 9233842 9234 212~ Y2

Equation 3.31 may be solved using least square techniques by forming the pseudoinverse

of P denoted 1. Hence:

PX, = F= PTPRE= PR = ¥ = (PTP) ' PTE = X = PTE. (Eq3.32)

This equation yields the mean square estimate for the object point Yf, Alternatively, Xﬁ
may be found by using three of the four equations, assuming that the three equations are
linearly independent.

In this exposition, we have assumed that the necessary image plane point
correspondences have been determined. It is important to say that this is the most difficult
problem in the development of a stereo vision algorithm. Techniques to solve this problem

are presented in [Ref. 3]. [Ref.4] presents an algorithm to match stereo images.

28




B. ESTIMATING 3-D MOTION PARAMETERS GF A RIGID BODY FROM
TWO CONSECUTIVE IMAGE FRAMES

1. General

In section A of this chapter, we have shown that using two cameras, we are abie
to find the object {target) 3-D position relative to a user selected global coordinate system.
As intermediate steps, it is necessary to establish feature correspondences between selected
points in the two stereo images (static stereo). It is also necessary to establish feature
correspondences for all pairs of consecutive image frames in each camera’s image
sequence. The targets that we are interested in are mainly airplanes. Therefore, we may use
as points for feature correspondences the tips of the wings, nose, stabilizers and rudder.

Estimation of the 3-D target acceleration components may be divided in three
steps. In the first step, the target estimated points at ¢, and /5 are used to estimate its 3-D
velocity components. In the second step, the 3-D velocity components of the target are

computed using the target’s estimated points at ¢, and ¢,. Finally, the third step estimates

the target’s 3-D acceleration components by identifying the time change of the target’s
velocity for each of the three velocity components. Alternatively, we may use Kalman
filtering theory to estimate the 3-D target acceleration components.

A different approach for astimating the 3-D, time dependent, target raotion is now
presented. The formal definition of a rigid 3-D object is one for which the 3-D distances
between any pair of points on the object do not change with time that is, for all pair of points

on the 3-D object:

s o2
| Xm=Xal" = ey V8, Vi, (Eq 3.33)

where ¢, . are constants. The assumption of an rigid, or nondeformable target is reasonable

and creates additional constraints for motion estimation. Rigidity constrains the motion of
individual object points to be strongly coupled, although the need for point correspondence

maintains. Then, the 3-D translation of the target may be determined by estimating the
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translation parameters of a single point object. The basis of estimating the target’s motion
using this approach, is that the 3-D motion of a rigid body can be described by a 3-D
translation vector and tivee rotation angles chosen with respact to a user selected coordinate

system. Then, six parameters completely define the target’s motion. Formulating the
rotations using three rotation matrices (RG' R and R D), the target’s motion is described
by:

X,(t;) =RX, (1)) +T, (Eq 3.34)
where R is the overall rotation matrix;

R = RoRGR,, (Eq 3.35)

and T is the translation matrix. Equation 3.34 may be represented in homogeneous

coordinates as:

R(1y). (Bq 3.36)

2. Monocular Motion Estimation Using Two Perspective Views

Our goal is to compute dynamically the rotation (R) and translation (7) matrices
from point (or feature) correspondences between two perspective views. We can divide the
process of estimating the three - dimensional motion of the target from image sequences in
three steps. The first step is to establish feature correspondences between two consecutive
image frames. Correspondences between features may be established through matching or
inter - frame wacking. [Ref.4] develops a two - view/ster-o matcher that computes
displacement fields from two images. The second step is to estimate the motion parameters
(R and T matrices). The third step is to estimate the 3-D motion of the target using equation
3.34. There are a number of papers in the digital image processing and computer vision

literature dealing with estimation of the motion parameters of the 3-D motion of a rigid
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body from two consecutive image frames. Weng, Huang and Ahaja [Ref. 5], propose an
algorithin that given 3 point correspondences solves for a intermediate matrix called the

essential parameter matrix (E). Then the Rotation matrix (R) and the translational direction

a,
2]

{the unit vector %T ) are obtained from E. The magnitude of the translational vector (i ')

and the absolute depths of the object points (x,, and x' ,, where x_, is the absolute depih
of the object’s & feature point and ', is the absolute depth of the object’s  feature point

after being rotated and translated) cannot be determined by monocular vision. The

Kok g Lok
wdl W7

estimate the target’s position because it is not possible to calculate the absolute dezih. This

algorithm also solves for the relative depths ( ). The algorithm is unable to

agrees with intuition, due to the lack of invertibility of the 3-D to 2-D image transformation.
To overcome this problem, we propose to estimate the absolute depth by correlating the |
dimensions of the target over the image plane with the guessed physical dimensions of the
target. A relatively easy trigoncmetric approach permits us to estimate the target’s depth
given the target’s physical dimenc.ons. Another approach for emulating stereo vision is to
use range and directional spatial information from the seeker. This information is combined
with the monocular vision equations in order to estimate the target’s 3-D motion.

In conclusion, menocular vision may be applied to estimate the motion of the
target if additional information about the target is available {or guessed). The target’s
acceleration components may now be estimated and injected into the mussile’s control

algorithm.

3. Stereo Motion Estimation Using Two Perspective Vicws
As we have seen, two or more spatially distributed sensors enables determination
of the 3-D target motion. Here, our goal is to determine, not only the target’s motion but

aiso the rotation and translation matrices that describe the motion. Given two consecutive
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time samnles or “frames” in each sensor, as well as image point correspondences, we may

write:
X0 = QL X, (Bq3.37)
X = 02,80, (Eq 3.38)
N
X (+T) = 04, X (1+T) = Q) ! ' f!xo(z), (Eq3.39)
YN
) o
Ra+1) = QLR (04T = 02, i : ' X, (1) . (Eq3.40)
o0

1

The matrix @, _, ; is the, already known, 3-D to 2-D transformation matrix (the superscript

refers to the sensor). T, is the time between two consecutive images. The system is
represented in homogeneous coordinates. Assuming n point for point correspondences, a

total of 8n equations in physical coordinates is obtained. However, the number of

unknowns is 12 +3n (9 elements of R, 3 elements of T and 3 elements for each X,,). This
yields the constraint on the number of point for point correspondences:
12+2n<8n. (Eq3.41)

Since n must be an integer, n 2 3. Thus, three corresponding image points from two views
in two frames are sufficient to determine both the motion parameters and the 3-D location
of the object points.

The three target acceleration components may be computed by taking the second
derivative following the filtering of the target’s motion data. Alternatively, the target’s

motion may be processed by Kalman filters to estimate its acceleration components.

S R e 5 e o T I A T SN S TN R S

el S gt e
Y - - E5 .m0




This additional information about the target’s behavior may be used to improve
the missile guidance towaras the target. In order to effectively use this information, we have
first of all to determine control laws that can use and produce better results if this

information is available. This will be stressed in the next chapter.

b
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V. SIMULATION DEVELOPEMENT

A. CONTROL ALGORITHMS DEVELOPMENT

Chapter II introduced propcrtional navigation guidance. In this section we derive more
advance guidance laws. Contrary to PROPNAV, these guidance laws use the estimated
acceleration of the target as a additionai input to the homing loop. As will be seen in
Chapter V, the advanced guidance laws relax the interceptor acceleration requirements and,

in general, yield smaller miss distances.

1. Augmented Proportional Navigation

Proportional navigation issues control commands that are proportional to the

predicted zero effort miss normal to the line of sight (ZEMp, ¢). That is, the missile

guidance system tries to minimize the final miss distance between the target and the missile
by issuing acceleration commands that are proportional to the miss distance, that would
result if the missile made no further corrective acceleration and the target did not maneuver,
Therefore, if the target maneuvers evasively it generates additional miss distance that is not
accounted for in the PROPNAV guidance law. Augmented proportional navigation also
issues guidance commands that are proportional to the predicted miss distance. However,
for augmented PROPNAYV, the miss distance is estimated by taking into account the
maneuver of the target (target acceleration). The augmented PROPNAV target's
acceleration dependent wrm will be calculated. This term is injected into the homing loop
to enhance the guidance performance. In the following analysis, we follow the
nomenclature of Chapter IT and the geometry of Figure 2.6.

The x component of the miss distance, for an evasive target, is computed as

foliows (the y component is computed similarly):
L)) = vy, (Eq 4.1)

where ' represents time. Then,




|

tr

ZEM () =1, =1 () +[v () dr' (Eq 4.2)
t

Where, ZEM, (1) is the x component of the zero effort miss, predicted at time ¢ = ¢ and

r. (1) is the present missile - target relative distance along the x axis. But,
X 1 — d .
a, (t) = dr (v, (1), (Eq 4.3)

where a; (1') is the x component of the target acceleration. Then,

v. (1) r
J‘ dv (') = Iaf(:")dt", (Eq4.4)
v, (8) t
where 1" is the variable of integration. Hence:
;
v, (1) = v (1) +j’af(r")dt". (Eq 4.5)
t

Substituting this equation into equation 4.2, we get the expression for the predicted x
component of the ZEM at time : '

et

ZEM, (1) =1, = 1) +v, () oo+ [[af (1" dr"dr". (Bq4.6)
te

-t,.

Where, 1, = tp—t is the time to go. The y component of the ZEM (1) is obtained using
the same reasoning, and is:

e

ZEMy(t) = ryll_“r = ry(t) +v, (1) tgo+”'a;v((")dt"dt". (Eq 4.7)
i

t r
The two interior integrals I ay(1")dr" and J" a) (") dt" are time functions; call:
{ {
.

k(1) = J'af(t")dt", (Eq 4.8)

¢

and
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ky(t') = Iaf(!")dt". (Eq 4.9)
{

Then, equations 4.6 and 4.7 may be expressed as:

, (Eq 4.10)
t
ZEM (1) =r ] _ =71 () +v, (1) tgo+Ikx(I")dt' =1 () +v (D1, + 1 (1y,)
14

(Eq4.11)

&

ZEM (1) = ry|‘ =1, (1) +v, (2 tg0+jky(t")dt" =1, () + v (D, +h, (1)
4

t
where &, (tgo) and hy (tg o) are leo and maneuver dependent functions. The component of the

ZEM that is perpendicular to the LOS, ZEMp (, is:

ZEMppos (1) = ZEM, (¢) cos (A(¢)) =ZEM (1) sin (A (1)) (Eq 4.12)

X

Substituting 4.10 and 4.11 into ‘this equation and setting cos(A(#)) = Q

and

sin(A (1)) = , we obtain:

y !
r(i)
ZEMp, o5 (1) = (Eq 4.13)

r, L (0
“y“)+W(OHo+%(%J)?UT-(R(0+VJ”%O+M(%J);OY'

From equation 2.52:

r @y, () =1, (), ()
(1) '

Then equation 4.13, which takes into account the target’s acceleration to estimate the miss

0 (Eq4.14)

distance, may be reduced to:

36




_ r. (1) ry (1)
ZEMPLOS(I) = tgor(t)k(t) + (hy([go) 6) _hx([go) T(_()_

The PROPNAV guidance command may be expressed in terms of the ZEM as (see derivation
in Chapter II):

). (Eq4.15)

NV (t)Z‘:M ,S(t)

uy () = -5 R0 (Eq 4.16)

where ZEM p; (1) was then derived for a nonresponsive target. If the target maneuvers the
zero effort miss is augmented by an additional term, on the right hand side of equation 4.135.

Therefore, a perfectly plausible guidance law, in the presence of target maneuver, would be:

(Eq4.17)

NV (1)
(1) =NV, (OA() +

i )Igo (hy(tgo) cos (A(8)) - = h, () sin (A (1)) -

w
m'ApN

This guidance law is PROPNAV with an extra term that accounts for the maneuver of the
target. The equation was derived for a nonlinearized geometry. The impossibility of knowing,
a priori, the future target maneuver, precludes the calculation of "_v(’ga) , lz.‘.(tgu) and oo

However, if the target desires to inflict the most miss distance it must maneuver 4t a small time
to go. Also, considering the time constants associated with the target’s maneuver, we propose

to approximate the time dependent target acceleration a,(1') by a constant target

acceleration(a, (¢) ) i.e.assume a, (¢') = a,(f) . Then, the control law may be stated as:

(Eq 4.18)
NV (D) ayu)r x(t) ti‘,u '
! oy () = NV (DA (D) + ‘Girgo( s (A()) = sm(x(r)))
or,
. NV,
U apy = NV A+ —2-r——( alcos (A) —a;sin(A)); (Eq 4.19)
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where the time factor was dropped. The extra term, present in augmented PROPNAV
(expression in parenthesis on the right hand side of equation 4.19), is proportional to the
component of the target acceleration normal to the LOS.

Linearization of the nonlinear missile - target geometry is shown in [Ref. 1] to be
an accurate approximation to the actual geometry. Then, assuming a linearized geometry,

equation 4.19 may be further reduced to:

W, = NV.h+ s (Eq 4.20)

where we have considered that the 1.OS angle is small. A zero - lag augmented proportional

navigation homing loop assuming linearized geometry is shown in Figure 4.1.

Physics ) Nuise
piles Seeker Filter

a; T 1 y=r, .._1,_ A
Q) K Vo 15 ™ 1

Navigation
aw

A

Guidance
system

I 0.5N|

Figure 4.1 Zero - lag Augmented Proportional Navigation Homing Loop
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The additional target maneuver term required by the guidance law, appears as a

feedforward term in the homing loop block diagram.

2. Optimal Intercept Guidance

The missile - target engagement sccnario may be described in state space

representation by the following linear system:
X)) = flx (@), u(t),t] = Ax(r) +Bu(t); (Eq4.21)

X is the n - dimensional state vector describing the relative movement between the missile
and the target and also, the dynamics of the guidance system. The variable u is the m -
dimensional missile’s control input vector. We seek to find a guidance law that is a function
of the system states. There is an infinite number of possible guidance laws. Thus, it is
necessary to state in mathematical terms what the guidance law should do. Certainly we
wish to design a terminal controller that would bring certain components of x (¢z) to zero,
using “acceptable” levels of control. One way to do this is to minimize a performance index
mede up of a quadratic form in the control:

175 b

J = [LTE(), U0, 1di = ;fuz(t)dt. (Bq 4.22)
0 0

subiect to the terminal constraint:
x{tg) =0, =01 ..,p, (Eq 4.23)
and the constraints:
() =fle(0),u(),t] = Ax() +Bu(1), (Eq 4.24)
x(0), given. (Eq 4.25)
In equation 4.23, p < n.
The miss distance will always be zero in a zero - lag PROPNAV navigation
homing loop. Guidance system lags or subsystem dynamics will cause miss distance.
Optimal guidance eliminates miss distance by canceling out the guidance system dynamics.

In this way the optimal guidance law attempts to make the real world guidance system
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appear to be a “perfect” (zero - lag) guidance system. To find the optimal control vector,
u(t), that brings the system from a initial state x (0) to a terminal state x (1) (where
some of its components are zero), we can use the method of the Lagrange multipliers. Then
the constraints (4.23) and (4.24) may be adjoined to the performance function (4.22) by
. T S ] T . T .
using the multipliers € = (g, e B OppyeenQp) and A = (A, ..., A)" as follows:
le

J = elx(ty) + %j‘{uz(t) #AT (1) [Ax (1) +Bu(r) =%(1)]} dr. (Eq 4.26)

The Hamiltonian is defined as follows:
Hx(),u(),t] =L{x@),ut),t]+ KTf[x(t) yu(e). . (Eqd.27)
Integrating the last term on the right hand side of equation 4.26 yields:
(Eq 4.28)

by

J=elx(tp) = M (ep) x (¢g) + AT (0) x (0) [ (H (0, u(0),1] +A(0).x (1) }dt
0

Considering the variation in J due to variations in the control vector u(?) , we get:

(Eq 4.29)

Iy ) .
dl = [(T-ATydx], ., + [ﬂdx],.o+ﬂ(g§1+kr(r))dx+g£!du dt
) !

In order to make the variations in J due to variations in u () independent from the
variations in x (¢) produced by the variations in u (f), we choose the influence functions

A (1) to cause the coefficients of dx to vanish:

Wl = ~gg = - gi; - x’fgé, (Eq 4.30)
Then:
A(n) = -ATA(0), (Eq 4.31)
with boundary conditions:
Atg) =&, (Eq 4.32)




Using these results, equation 4.29 becomes:

&

dJ = AT (0)dx (0) +f§gdud[. (Eq 4.33)
0

Hence, A7 (0) is the gradient of J with respect to variations in the initial conditions, while
holding « (r) constant and satisfying the constraints of the problem. For an extremum, «J
must be zero for arbitrary du (¢} . This can only happen if:

H _
du

0, 0<rsitp, (Eq 4.34)
ul +ATB = 0. (Eq 4.35)
Then, we may dutermine the control vector u (¢) . as:
u(t)y = -B"A(0). (Eq 4.36)
Substituting equation 4.36 into equation 4.24 and repeating equation 4.31, the following

two - point boundary value problem is obtained:

o (a-ggTly
\xJ “lo ar M' (Ba437

U
The 2n boundary conditions are:
x(0), given, (Eq 4.38)
x;(tg) =0, i=1..p: (Eq 4.39)
AGp) =90, i=p+l,...n (Eq 4.40)
The n boundary conditions 4.39 and 4.40 may be replaced by the boundary condition 4.32,
which may be rewritten as:
M(tp) =€ i=0..,p, (Eq 4.41)

A.‘.(t,,—) = 0, i=p+l,...,n. (Eq 4.42)



S T D e L Rt R R L

TR

ARG PN o A

S

WL

s 3 e TE

The two - point boundary value problem 4.37, 4.38, 4.41 and 4.42 may be solved by the

sweep mathod [Ref. 6]. The sweep method seeks to find solutions of the form:

A = Wx() +Y()s, (Eq 4.43)
= U(x()+V(ne, (Eq 4.44)
where W, Y, U@ and V() are time dependent matrices,
T " T _ - afar .
=[x, .....xp] _— and &' = [g, ....ep] = [A, ....)x',,] i Therefore, we want

to find solutions for the influence functions A (¢) that are function of the state vector .x (¢)
and the final value of the influence functions, or equivalently, of the specified final states

z. Since equations 4.43 and 4.44 must be validat t = (.

W) =0, (Eq 4.45)
V{tp) =0, (Eq 4.46)
{ |
N ””‘” .
Y(t) = = )' . (Eq 4.47)
i Onp) xp :
Cnxp
. |
Uly) =1 Lyp | Opx (n=p) || : (Eq 4.48)
I JI!p»:n

where / is the identity matrix and O is a zero matrix with the specified dimensions.

Substituting equation 4.43 into 4.37 and treating € as a constant vector, we get:
Wx+ Wi+ Ye = AT (Wx+Ye). (Eq 4.49)
Substituting ¥ from equation 4.37 into the last equation, and again using equation 4.43 to

eliminate A, we obtain:
(W+WA+A"W-wBBTW)x + (ATY + Y -WBBTY)e = 0. (Eq4.50)

This expression must be true for any v and €, so the coefficients of x and &£ must vanish:
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W+WA+ATW-WBB'W =0 W(1) =0, (Eq 4.51)

and

II”‘I’

Y+ATy-wBB'Y =0: Y(tp) = - - - . (Eq4.52)
0 .

n=pxp
nxp
Next, we differentiate equation 4.44 with respect to time, treating € and : as constant
vectors:
Ux+Ux+Ve = 0. (Eq 4.53)

Substituting x from equation 4,37, and using equation 4.43 to eliminate A, we obtain:

(U+UA=-UBB"™W)x+ (V-UBBTY)g = 0, (Eq 4.54)

This last expression must be true for any ¥ and &, so the coefficients of v and & must .

vanish:
U+UA-UBB'W = 0, (Eq 4.55)
V-UBB'Y = 0. (Eq 4.56)
From equations 4.52 and 4.55 and the boundary conditions 4.47 and 4.48, we conclude that:
U =Y. (Eq 4.57)
Then equation 4.56 may be rewritten as:
Vv =y'aBly; v =0 (Eq 4.58)
The Ricatti equations 4.51, 4.52 and 4.58 may be integrated backwards from the final

conditions to yield W (¢), Y (1) 1nd V (1) . The equation 4.44 is solved for € to yield:

e= V@ - (x(n]. (Eq 4.59)

43




R R i =

A~ AT ST AL et T TR e

o S

Our goal is, to find the influence functions A (¢) in order to find the optimal
control vector using equation 4.36. Equation 4.59 may be substituted irww aquation 4.43 to
find A (1) :

A = (W=YV'YDe(n) +Yv's (Eq 4.60)
However, the Ricatti equation 4.51 has as solution:
W) =0, (Eq 4.61)

Hence, equations 4.52 and 4.58 become simply:

| i
L b | |
Y+A'Y = 0 Y{t:) = . (Eq 4.62)
\‘ n=pxp J
nxp
and
I
V() = -I(YTBB’Y) dr. (Eq 4.63)
{
Combining equations 4.36, 4.60 and 4.61 yields:
u(t) = =By = (-BTYvY) [z=YTx(1)]. (Eq 4.64)
The final condition that we are interested on is z = [x ....xp]'{r_l = [0,...,0]
Hence the expression 4.64 may be reduced to:
w(t) =8Tyv'Ylx (), (Eq 4.65)

where Y and V are computed from equations 4.62 and 4.63, respectively.

Now that we have derived the ierminal conwoller optimal feedback guidance law,

we proceed to derive the continuous feedback law described by equation 4.65 for a single
lag guidance system. The single - lag guidance system is mathematically described in the

Laplace domain as:




-t

Missile
—»X
Figure 4.2 Intercept Geometry
A 1
TS (Eq 4.66)

where a,, is the missile’s acceleration, u,, is the command acceleration, and T is the
effective guidance systexﬁ time constant.

The relative motion between the target and missile is considered with the
linecarized (small angles approximation) intercept geometry shown in Figure 4.2. The

assumption of small angles (flight path angles 0 , 8, and LOS angle A) permits us to
g m t

express the equations of motion in terms of state variables normal to the reference intercept
course. The single - lag guidance model shown in Figure 4.3 integrates the missile - target
relative motion of Figure 4.2 with the dynamics of the guidance system. The diagram of

blocks of Figure 4.3 can be expressed in state space form as:

1 Jo1o olry,] ['o
ﬁ 001 -1 ﬁ 0
c"z, =000 0|, +|0um. (Eq 4.67)
. RIS !
[4n) 000 =5 L"nJ 7
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Thus:

N 010 0] ol
Y 001 ~1! 0 .
v="| A=10000h B=jol (Eq 4.68)

[ o : ; Lo

: I ! ‘1: il:

b 99077 T :
1[1”1 S S
!
S
-,
1
T

U, i

igure 4.3 Single - lag Guidance System Modgc!

To find the optimal feedback law from equation 4.65, Y and V have to be calculated using

equations 4.62 and 4.63, respectively. The solution for Y is obtained from:

Y+aTy =0, Y(p) = ;gl; , (Eq 4.69)
A

Lol :




0000! iq
11000 :
Y+l0100|Y=0 Y(p = lgl' (Eq 4.70)
. lo-10-1l :
0-10-% 0|

1

1 o : ;
=S
y o S = £ i (Eq4.70)
: | r (1= ’ 4o 1
(tp=1) —5— 1| -5 1
: !Tzil- ——e | '—T{er+—373—1“
L i

The matrix V (in this case, V is a scalar since we are specifying only one terminal

constraint, namely zero miss distance: y = 0), is computed using equation 4.63:

(Eq4.72)
i tr r e 2
V() = —jYTBBTYdI = (i )j(e T, [—ji,g - 1) dt;  where lyp = lp—1"
t t
Afier some cumbersome computations, we find:
(Eq 4.73)
V() = ‘: (=1 +3K ~3k) + 12ke™* +3e7%* =3; where k= [:;_,? -

Then using equation 4.65 we obtain the optimal feedback control law:

\ N - ~ / l¢'al Pt
u{n = == {y +ytg0+u.5u‘ 2+ \—Umlz) te k

1'go 'i'k_l)], (Eq4-74)
g0

6k (e +k-1)
26° — 6k + 6k +3 — 12ke K =3¢

tgn
where N = k= Ed - . (Eg4.75)

It is desirable to express the state variables y and y in terms of the line of sight rate A.

Assuming small angles, we find from Figure 4.2 that:
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v+ !

¥ y A g0 =
A=lz= —1 )X = — , (Eq 4.76)
r Vc \IF - t) Vctéo
hence, the optimal control law can be expressed as:
. N . N
u(l) = chmp(e k+k—1)am+§a,. (Eq 4.77)

This equation is a biased proportional navigation guidance law where a time varying
navigation gain N and an acceleration feedback patk: provide compensation for the missile

time lag. The acceleration command is issued normal to the L.OS.

B. TRIDIMENSIONAL MISSILE/TARGET ENGAGEMENT

In this section we are going to model the missile/target tridimensional engagement
scenario. Three guidance laws, namely: PRCFNAYV, augmented PROPNAYV and optimal
guidance will be used and tested in missile guidance. The engagament for the two later
guidance laws will be modeled, by assuming the presence of a seeker and a camera aboard
the missile to extract the target’s 3-D acceleration. The three dimensionali MATLAB
programs are presented in Appendices A through C. The simulation results are presented

in the next chapter.

1. 3-D Missile /Target Geometry

The tridimensional scenario is developed in spherical coordinates by defining two
perpendicular planes in pitch and yaw, as illustrated by Figure 4.4.

InFigure 4.4 r is the relative distance between missile and target; A and A

piten ruw
are the line of sight angles over the pitch and yaw planes, respectively, and may be

expressed as:

(Eq 4.78)
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v =y
A =atanl ! ﬁ
: L (=)

i . (Eq 4.79)

The coordinate system shown in Figure 4.4 translates with the missile. To track
the missile target tridimensional positions we define a ground based coordinate system

shown in Figure 4.5.

Missile ~|. _
(Xps Vi Zn) e pitch e > VY
........ LOS in yaw J
T 5'//
yaw plane
igure 4.4 Missiie/Target LOS Angles
In Figure 4.5:
Zm
}"m_ pitch = atan (_f'_i:::{) ’ (Eq 4.80)
X Vi
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A puen = atan ( "' :J. (Eq4.81)

i Az : .
e Missile or '
------------------- Target |
(‘\'m’ Y :m) or
] (X v 2)
| :
g | i
/| | |
or : !
. pltch '
(0.0, 0 NP sy
e, “f..p“(.'h E /I ]
m yawor A’.‘_ yaw e é/l !
X
-]
: !
Figure 4.5 Ground Coordinate System T
= Im 4
m_ yaw = atan x; , (Eq 4.82)
Y N
A, paw = atan ) (Eq4.83)
g The missile is controlled in 3-D space by issuing guidance commands in two
orthogonal planes (pitch and yaw), ;.. and u,,,,. The magnitude of these cormmands
3 50




depends on the selected guidance law and their ridimensional direction is perpendicular to
the LOS defined in the two planes (see Figure 4.4). The LOS in pitch is defined by the
imaginary 3-D line from the missile to the target in the pitch plane. The LOS in yaw is
defined by the imaginary 2-D line from the missile to the projection of the target over the
yaw plane. The yaw plane is simply the horizontal .xv plane. The pitch plane is the vertical
plane normal to the horizontal plane and rotated by the yaw angle }\y ay

The guidance laws under study can be expressed as a function of the classical
proportional navigation guidance law plus a term that may depend, among other variables,
on the target and missile accelerations. Hence, each guidance law (classical proportional
navigation, augmented proportional navigation and optimal guidance) can, in general, be

expressed, as:

U (8) = NVA+f(ap ap e T) (Eq 4.34)
where 1, (f) is the guidance cominand that is issued perpendicular to either the LOS in
yaw or the LOS in pitch. N is constant for PROPNAV and augmented PROPNAV. For

optimal guidance, N is function of the time to go and the effective time constant of the

guidance system. The closing speed V, is the relative speed between the target and the

missile along either the LOS in yaw or the LOS in pitch. The LOS rate A may be the LOS
rate in either the pitch or the yaw plunes. The term f(a,,, 4,, Lo T) may be function of both

the missile’s acceleration g, and the target's acceleration «,, the time to go 1, and the

go
guidance system’s effective time constant 7. In order to generate the pitch and yaw
guidance commands ., (+) and u,,, (1), it is first necessary to explain how to obtain

the variables that they depend on.

2. Seeker Head Modeling

The seeker is able to detect, acquire and track by sensing and processing the

radiation or reflection of energy by the target. The seeker is normally located in the
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missile’s nose and mounted on a gimballed platform which maintains the target within the
field of view by rotating the platform.

The control torque to the seeker may be described by the following equation.
T = IB, (Eq 4.85)

where T is the applied torque, I is the seeker’s moment of inertia and {5 is the seeker’s

angular acceleration. The seeker’s dynamics is modeled by the following second order

differential equation:

5= = (B2 ~esb, (Eq 4.86)

where the coefficients ¢| and ¢, are determined by the seeker’s time constant (7,) and
damping ratio. Taking the Laplace mansform of equation 4.86, assuming zero initial
conditions, we obtain the filter’s transfer function that represents the relationship between

the LCS angle input A () and the seeker inead angle output {3 (¢) :

By o (Eq 4.87)

Assuming a damping ratio of one, the transfer funciion in equation 4.87 may be rewritten
as!

B (s ¢ ¢
(-(- ) = »-2»»»-3--»--*-- = 5 (Fqg 4.88)
AGY  reste 1
Z l (s+ -~
Isk
Choosing 1., = 0.1 sec (which is & good approximation of u real world system), the

constanis ¢, and ¢, may be obtained:
¢, = (—) =100, (Eq 4.89)

ey = 2(2) = 20. (Eq 4.90)
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Given that we are interested in the 3-D missile/target engagement, the seeker must provide

line of sight rate information in both planes. Hence:

Bpitch 20
) pich 0 (Eq 491
Mpirch  $%+20s + 100 Fa 490
- Bl ‘l
Pyaw _ 0 (Eq 4.92)

Avaw 524205 + 100

where 3 pitch and B3, are the seeker’s pitch and yaw angles, respectively. Figures 4.6 and

4.7 depict the pitch and yaw signal flow graphs of the seeker.

| 1 .
pitch 4 100 . ¥ Bpmh s Bpxtch | ;
-20 :
«— |
-1 !
I
!

From these diagrams, the continuous-time state equations of the form:
Kok = Aglop + Byl (Eq 4.93)

may be easily obtained. Selecting the state vector to be:
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Poitch (Eq 4.94)

i)'aw 1 100 w "‘f
/

/

/

Figure 4.7 Seeker Head Flow Graph (Yaw)

and the seeker head input as;

A
Ug = P”C':!, {(Eq 4.95)
Myan)
equation 4.93 becomes:
Ero 1 0 O© 0 0]
¢, = 710020 0 0 100 O}, 496 g
kTl o 0 0 1% 0 of* (Eq 4.96)
0 0 -100-20 0 100
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The variables Bpmh and Bvaw are ectimates of the LOS angle rates A and

pitch

Xy aw? and are available from the s2cond and forth states of x,, respectively. The estimates

of the LOS rate in pitch and yaw permits us to determine the missile command inputs « pitch

and iy,

3. Guidance System
In this work, the guidance system dynamics are modeled as a single lag as seen in
equation 4.66. This equation is repeated here.
Ay (5) ! ,
MOy (Bq 4.97)
For the 3-D missile/targat engagement the guidance system generates missile commands in

both plunes, pitch and yaw. Hence:

Q. pitch ($) 1
. = , Eq 4.98
Wuen(S)  1+Ts (Eq 4.58)
An yaw(s) 1
——s = TR (kg 4.99)
gy (3 14 Ts
where a, ;. and @y, are the pitch and yaw missile’s accelerations; u, ., and u,,,,

are the pitch and yaw missile’s acceleration commands. Figures 4.8 and 4.9, show the pitch
and yaw signal flow graphs, for the missile guidance system. We chose the guidance system

time constant 7 to be 1.0 second.
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Figure 4.8 Guidance System Signal Flow Graph (Pitch)
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; Figure 4.9 Guidance System Signal Flow Graph (Yaw)
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From these diagrams, the state equation is easily obtained. Defining the guidance system
vl
5 state vector as:
I
;:2 . — am_ {)itCh 2q 4.100 i
; g = , (Bq 4.100)
i Lam_ yaw |
i and the guidance system input as:




U o
— : ‘I -4
gy = pitch| (Eq 4.101)

the state equation becomes:

o o
_ =10l 10
= o et 014

Koy

(Eq 4.102)

4.  Missile And Target Kinematics
The missile is controlled in three dimensional space by generating acceleration
commands in two orthogonal planes. These planes are the pitch and yaw planes. The
acceleration commands in pitch and yaw are issued perpendicular to the respective lines of
sight. The magnitude of the acceleration commands depends on the selected guidance law.
From equation 4.84, the pitch and yaw missile acceleration commands may be expressed,

in its general form, as:

“pitch = ch_ pitch;\‘pitch +f}zirch (("m' Up [gu' Ty, (Eq 4.103)
Uy = NV, yuwkyaw +fyuw (a,, dp toor T). (Eq 4.104)

Ve piten add Vi, are the relative speeds, between the target and the missile along the

pitch und yaw line of sights. The functions fl

pitch (am' a

o oo T) and f'yaw (a,, a, Lo 1)
are the augmented PROPNAV or optimal guidance extra terms in pitch and yaw,
respectively.
In order to track the missile’s 3-D coordinates (x,,v,,2,), the missile command
accelerations in pitch and yaw, are broken down into cartesian coordinatc system
components.

Figure 4.10, shows the decomposition of the pitch acceleration command in its

components. From this figure the following relationships are derived:

Uy, pitch = = (am_pmhsmkpuch) cos}\yuw, (Eq 4.105)

Cox pitch = = (am_ pitch Smlpuch) Sin A’yaw’

(Eq 4.106)
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d “Chcos}\.p“ch. (Eq 4.107)

mz_ pitch = 9m_p

L ]
/9 (’l arget
, Xp Y 3,
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am. pitch itch ol 2

; ... U pitch pitch p a“e‘;
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o Yo 2}/ Ay, e Y
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yaw plane
X
Figure 4.10 Pitch Plane Acceleration Components
Figure 4.11 shows the decomposition of the yaw plane acceleration command in
to its v and y components. From the figure the following relationships are obtained:

Qx. yaw = T yuwsmkyaw’ (Eq 4.108) )
Ay yaw = . ),awcos}\yuw. (Eq 4.109) R
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Figure 4.11 Yaw Plane Acceleration Components

To tind the overall missile’s acceleration components along the three cartesian axis, we use

the results of the equations 4.105 through 4.109:

Qux = Gpx. pitch + . yaw?® (Eq 4.110)

amy = dpyy. pitch + amy_ yaw?® (Eq4.111)

mz = Sz puch: (Eq 4.112)




The missile’s tridimensional movement is determined by these three acceleration

components. Defining the missile state vector as:

X, = M, (Bq4.113)

alﬂ = [ myJ * (m 4.114)

i the missile state equation is:

: 010000 [000
v 000000 {100
; 000100 000l
X, = X -+ a..
"~ loooooo"" 010"
000001 ‘000

000000 001

(Eq 4.115)

As we have seen in Chapter III, the missile when equipped with a camera and a
seeker is able to estimate the target’s 3-D acceleration components. This information may
be used to improve the missile guidance towards the target. Defining the target state vector

as.

' (Eq 4.116)

and the target’s acceleration as:
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a, = a,, (Eq 4.117)
4 .’j
the target state equation is:
010000 000
000000; 100
%, = 000100y , 000/, 4118
71000000 010 B 4118
000001 [000)
1000000 001

the tridimensional target acceleration a, may be ¢ aated using the missile’s image

processing capabilities;

5. Pitch And Yaw Closing Velocities. Determination Of Time To Go

Figure 4.12 shows the decomposition of the missile and target absolute velocities.

From this figure:

(Eq 4.119)

Vol (Eq 4.120)

Figures 4.13 and 4.14 show the projection of the missile's velocity vector over the pitch and
yaw piarnes,
These figures permit us to compute the missile’s and target’s velocity

compenents, over the pitch and yaw planes:

v

m_ pitch

=V, cos( A

(Eq 4.121)
(Eq 4.122)

Ym_ yaw - _vaw) !

% = V ,cosy

m_ yaw m_ ver’

€1




and

Y 1pitch = Vycos (Yt_ vaw k_vaw) ’ (Eq 4.123)
V. yaw = V;COSYL ver: (Eq 4.124) )
Z
4
Ving.. .
S v

Figure 4.12 Missile And Target Velocity Components

The pitch closing velocity V.

c. pitch is found by projecting the missile’s and target’s pitch

plane velocities along the LOS in pitch (see Figure 4.4). Then:
(Eq 4.125)

Vc_ pitch = Vm_ pirchCos (A'pitch Y pi:ch) ” Vt- [)itchcos (}\pitch R pitch) '
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% Similarly, the yaw plane closing velocity, is obtained as:

(Eq 4.126)
- v'(.'_ yaw = Vm_ yawcos (Ym_ yaw - A’yaw) - V.(_ '\'a‘vvcos (Yt_ yaw - K}'a\v) ‘
e _ — _ .
!
|
i
|
% | | m. pit(.‘l} ,'"/,,
200G T pitch plane
7 h 1
“Ym_ pitch —d > ¥ '
g | : Yo yaw
; X x yaw plane
LS !
5 |
|
i Figure 4.13 Missile’s Pitch And Yaw Velocity Components
The time to go until interception may be computed from:
: o= o (Eq 4.127)
Y 8¢ Vc_ pitch , '
i . where r is the missile/target relative distance along the pitch LOS (see Figure 4.4).
g“:f
»&.
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Figure 4.14 Target’s Pitch And Yaw Velocity Components

5. Proportional Navigation

The PROPNAYV 3-D simulation, in Appendix A, uses missile commands in pitch

and yaw of the form:

“pc’tch = ch, pitch}\pirch’

Uygy = NV A

c. yawVyaw

where N is a constant,

7. Augmented Proportional Navigation

The augmented PROPNAV 3-D simulation,

commands in pitch and yaw of the form:

upitch = ch_ pi.;h;&pirch + O.SNa,_ pitch’
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(Eq 4.128)

(Eq 4.129)

in Appendix B, uses missile

(Eq 4.130)




Uygw = NV yawhyan +0.5NG, (Eq 4.131)
where a, .., and @, y,,, are the components of the target °s acceleration normal to the

pitch and yaw line of sights and & is a constant.

8. Optimal Guidance
The optimal guidance 3-D simulation, in Appendix C, uses missile commands in

pitch and yaw of the form:

' N k., N
“pirch = ch_ pitch}"pitch + ki (e +4h-1) Q. pitch t 2 a,. pitch? (Eq 4.132)

: N N
Uy = NV, yaw}"yaw + 2 (e +k=1)a, .t 54¢. yaw (Eq 4.133)

where & and N are given by equation 4.75.

9. Discrete-Time Siulation Using State Space Methods
The general continuous-time state equations are:

X (1)

v

1!

Ax(t) +Bu(t), (Eq 4.134)

Cx(1) +Du(r) (Eq 4.135)
where x (¢) is the state vector and y (f) is the output vector. This system is simulated by

iterating the discrete-time state equations:

x(n+1l) = dx(n) +Tu(n), (Eq 4.136)
y(n) = Cx(n) +Du{n). (Eq 4.137)
where;
AT, . . .

O =¢ T, = sampling time; (Eq 4.138)

T,
A= JeA'B dr. (Eq 4.139)

0
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The missile/target engagement scenario is simulated using the MATLAB
software package. The discrete-time state equations used in the simulation are defined for

the seeker, guidance system, missile, and target dynamics:

Ygn+l) = (I) s () +T Sk W (n), (Eq 4.140)

\fgs(n+l) = ,s gJ(n) +F uq‘(n) (Eq 4.141)

X (n+1) = <D am (n) +I“mum(n); (Eq 4.142)

v (n+l) = <D[.‘c,(n) + F,u,(n). (Eq 4.143)
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V. SIMULATION RESULTS

A. GENERAL

This chapter presents the results of the computer simulations for a missile equipped
with a radar and a camera. The missile/target 3-D engagement was simulated using three
control laws:

1. Proportional navigation,

2. Augmented proportional navigation,

3. Optimal guidance.

The simulation was conducted for two different target maneuvers:
1. A 3-D constant target acceleration,
2. A 3-D varying target acceleration.
The following assumptions are made throughout:

1. We assume that the simulation’s initial conditions are defined when the missile
enters into the terminal phase of the flight (about 10 seconds before impact).

2. The PROPNAYV and APROPNAY effective navigation constant is 3 (N = 3),

3. The missile is limited to 25 g’s accelerations in pitch and yaw,

4. The instantaneous target acceleration is available from previous image
processing. No delays are assumed in this process.

5. The missile and target speeds are limited to 3500 and 2000 feet/sec,
respectively,

6. The missile is in a collision triangle with the target ¢n entering into the terminal
phase of flight.

7. The target may start its evasion maneuver at any time {initial time),

8. The target is limited to 4 maximum of 12 g’s,

9. The acceleration due to gravity is ignored,

10. The sampling time 15 0.01 seconds.



B. ENGAGEMENT SCENARIGCS. RESULTS

1. Scenario #1 (Constant Tarzet Acceleration)

The initial missile/target geometry (wheo the missile enters into the terminal

phase of flight) is shown in Figure 5.1.

TARGET , [MISSILE L
— ~

f |
i / 30000

500 ! feet

rigure 5.1 Initial Migsile/Target Geomeiry

—r
own
iy

nd speeds in feet/
Sec):

68




[;vm (0) ' . ‘

e 0
SOy 998
X, (0) = i"f’”(O)f = 0 (Eq3.1)
¥, (0) 7! 1000
2p(0 0
2(0) 47.1339)
A0 000
SO
O g | ]
X = ! I ' 52
(0 o " o] (Eq 5.2)
(0 300
T

The target’s evasive maneuver is constant (the accelerations are in feet/sec2)

Y [3xg
1 = 1xg|s (Eq 5.3)
5 12x8

where the acseleration of gravity is: g = 32.2 feet/sec?. Figures 5.2 to 5.22 display the
results of the three dimensional simulation for the constant target evasive maneuver.
Figures 5.2 to 5.8 relate to the proportional navigation (PROPNAY) guidance law. Figures
5.910 5.15 relate to the augmented proportional (APROPNAV) guidance law. Figures 5.16
to 5.22 relate to the optima!l guidance law. Figures 5.4 t05.8,5.11 to 5.15 and 5.18 10 5.22
display the results assuming that the target starts its maneuver 6 seconds after the missile

entered into the terminal phase of flight.
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MISS DISTANCE vs TIME TO GO, PROPNAV
70 ' ! T T T T -

H (4] [9)]
(=] (@] [@]
Y T T

L f '

MISS - FEET
w
o

N
(o]
T

1

a
T
—

00 2 4 6 8 10 12 14 16
TIME TO GO - SEC

Figure 5.2 Miss Distance vs.Time To Go (PROPNAYV)

MISS DISTANCE vs INITIAL TIME, PROPNAV
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Figure 5.3 Miss Distance vs. Initial Time (PROPNAY)
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MISSILE ACCELERATION MAGNITUDE vs TIME, PROPNAV
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Figure 5.4 Missile Acceleration Magnitude (PROPNAY)
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TARGET ACCELERATION MAGNITUDE vs TIME, PROFPNAV
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Figure 5.5 Target Acceleration Magnitude (PROPNAY)
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MISSILE PITCH ACCELERATION vs TIME., PROPNAYV
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Figure 5.6 Missile Pitch Acceleration (PROPNAYV)
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MISSILE YAW ACCELERATION vs TIME, PROPNAV
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Figure 5.7 Missile Yaw Acceleration (PROPNAYV)
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< 10" RANGE vs TIME, PROPNAV
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Figure 5.8 Missile To Target Range (PROPNAY)
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MISS DISTANCE vs TIME TO GO, APROPNAV
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Figure 5.9 Miss Distance vs. Time To Go (APROPNAY)

MISS DISTANCE vs INITIAL TIME, APROPNAV
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Figure 5.10 Miss Distance vs. Initial Time (APROPNAY)
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MISSILE ACCELERATION MAGNITUDE vs TIME, APROPNAV
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Figure 5.11 Missile Acceleration Magnitude (APROPIMNAYV)
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Figure 5.12 Targe? Acc eteration Mangitude (APROPNAY)

75




MISSILE PITCH ACCELERATION vs TIME, APROPNAV
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Figure 5.13 Missile Pitch Acceleration (APROPNAY)
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Figure 5.14 Missile Yaw Acceleration (APROPNAYV)
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MISS DISTANCE vs TIME TO GO, OPTIMAL
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Figure 5.16 Miss Distance vs. Time To Go (OPTIMAL)
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Figure 5.17 Miss Distance vs. Initial Time (OPTIMAL)
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MISSILE ACCELERATION MAGNITUDE vs TIME, OPTIMAL.
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Figure 5.18 Missile Acceleration Magnitude (OPTIMAL)

TARGET ACCELERATION MAGNITUDE vs TIME, OPTIMAL
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Figure 5.19 Target Acceleration Magnitude (OPTIMAL)
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MISSILE PITCH ACCELERATION vs TIME, QPTIMAL
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Figure 5.20 Missiie Pitch Acceleration (OPTIMAL)
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Figure 5.21 Missile Yaw Acceleration (OPTIMAL)
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< 10° RANGE vs TIME, OPTIMAL
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Figure 5.22 Missile To Target Range (OPTIMAL)
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2. Scenario #2 (Varying Target Acceleradion)
The initial missile/target geometry and the initial conditions are the same as used
for tne constant acceleration scenario. Naiaely, the target geometry is shown in Figure 5.1
and the initial conditions are defined by equations 5.4 and 5.5. The target’s evasive
maneuver may start at any time to go. The target performs the following 3-D maneuver (the

accelerations are in feet/secA2):

' (Eq 5.4)

; ‘ 3xgxs'm(yl_yaw)
AN ‘4xgxoas(y‘_yaw '

kA 3% 8% cos (Y, piper) |

—_————

i

where v, . and v, pirch &€ the terget’s yaw and pitch flight path angles, respectively.

Figures 5.23 to 5.43 display the results of the threc dimensional simulation for this type of

evagive maneuver. Figures 5.23 two 5.29 relate to the proportional navigation (PROPNAV)

: guidance law. Figures 5.30 to 5.36 refate o the augmented proportional (APROPNAV)
guidance law. Figures 5.37 10 5.43 relate to the optunal guidance law. Figures 5.25 to 5.29,
5.32to 5.36 and 5.39 10 5.43 display resuits, assuming that the target starts its maneuver 6

seconds after the missile entered into the terminal phase of flight.
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MISS DISTANCE vs TIME TO GO. PROPNAV
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Figure 5.23 Miss Distance vs. Time To Go (PROPNAY)
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MISSILE ACCELERATION MAGNITUDE vs TIME, PROPNAV
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Figure 5.25 Missile Acceleration Magnitude (PROPNAY)
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MISSILE PITCH ACCELERATION vs TIME, PROPNAV
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Figure 5.27 Missile Pitch Acceleration (PROPNAY)
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Figure 5.28 Missile Yaw Acceleration (PROPNAYV)
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MISS TISTANCE vs TIME TO GC, APROPNAYV
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MISSILE ACCELERATICN MAGNITUDE vs TIME, APROPNAV
700 . : . . - | _
800F 1
500} :
o
&y 400f ]
L
@
& 300] ]
[
200F :
100f M/—\ ]
o \NL A 1 1 L
0 2 4 e 8 10 12
TIME - SEC

Figure 5.32 Missile Acceleration Magnitude (APROPNAY)
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Figure 5.33 Target Acceleration Magnitude (APROPNAY)
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Figure 5.34 Missile Pitch Acceleration (APROPNAY)
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Figure 5.35 Missile Yaw Acceleration (APROPNAY)
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Figure 5.36 Missile To Target Range (APROPNAYV)
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Figure5.38 Miss Distance vs. Initial Time (OPTIMAL)
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MISSILE ACCELERATION MAGNITUDE vs TIME, OPTIMAL
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Figure 5.39 Missile Acceleration Magnitude (OPTIMAL)
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Figure 5.40 Target Acceleration Magnitude (OPTIMAL)
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MISSILE RPITCH ACCELERATION vs TIME, OPTIMAL
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Figure 5.41 Missile Pitch Acceleration (OPTIMAL)
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Figure 5.42 Missile Yaw Acceleration (OPTIMAL)
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VI. CONCLUSIONS AND RECOMENDATIONS

A. CONCLUSIONS

1. Scenario #1 (Constant Target Acceleration)
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Figure 5.44 Miss Distance Comparison For The Three Guidance Laws
(Scenario #1)
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} 2. Scenario #2(Varying Target Acceleration)
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Figure 5.46 Miss Distance Comparison For The Three Guidance Laws
(Scenario #2)
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3. Discussion

The three dimensional miss distance may be improved by estimating the 3-D
target’s evasive maneuvet. One ‘way to estimate the 3-D target acceleration is by utilizing
dynamic image processing. Three setups were considered:

1. two cameras,

2. acamera and aradar,

3. only one camera,

In the single camera setup, actual range is achieved by guessing the target’s
physical dimensions. The target’s 3-D motion parameters can be estimated by utilizing two
consecutive image frames. The target’s acceleration may be computed by taking the second
derivative after filtering the target’s motion data. Alternatively, the target’s 3-D motion
may be processed by Kalman filters to estimate its acceleration components. This
additional information about the target’s behavior is injected in suitable control laws to
improve the missile’s homing performance.

Proportional navigation, augmented proportional navigation, and optimal
guidance laws were derived for use in a three dimensional environment. The classical
proportional navigation guidance law tracks a target with good accuracy, especially if the
target maneuvers at long time to go. However, when compared with augmented
PROPNAV and optimal guidance, PROPNAYV requires higher missile acceleration
capabilities. A plausible guidance law is one that issues missile’s commands proportional
to the 1iss distance that would result if the missile made no furthor corrections. Augmented
proportional navigation was derived using this heuristic argument. For a constant target
maneuver, augmented proportional navigation increases the missile percentage of kill. For
a non constant evasive mancuver, APROPNAYV does not always guarantees less miss
distance than PROPNAYV. However, APROPNAV requires less missile acceleration
capabilities than PROPNAYV. Optimal guidance was derived for a missile with a single lag
guidance system. Optimal guidance provides compensation for the missile’s guidance

system dynamics. The optimal guidance law requires the least missile acceleration
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capability of the three guidence laws. In fact, this law is derived in order to drive the miss
distance to zero while minimizing a perforinance index made up of the integral of the
square of the contro!l. Clearly, the optimal guidance law presents the least miss distance of
the three guidance laws. However, it requires a missile with complex signal processing
capabilities. The homing capabilities of the missile can be dramatically increased by
identifying the target’s evasive maneuver and injecting this information into the
APROPNAYV (especially for a constant target maneuver) or optimal guidance control
algorithms. The cptimal control algorithm guarantees extraordinary performance. Utilizing
optimal guidance, especially against highly responsive targets, can be the difference

between failure and success.

B. RECOMENDATIONS

It is recommended to continue this research by simulating the overall system (i.e.
estimating the 3-D target’s evasive maneuver from two consecutive image frames and
injecting this data into the tridimensional missile/target engagement simulation programs
developed in this thesis). The simulations developed in this thesis are very generic and
easily adapted to different conditions (i.e. for systems with different dynamics and initial
conditions). The consequences of the image measurement errors in the target acceleration
estimation and ultimately in the miss distance can be investigated. Finally, it is
recommended that electronic counter measures (ECCM) be added to the target’s evasion

maneuver in order to evaluate their effects on the miss distance.
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APPENDIX A - MISSILE/TARGET THREE DIMENSIONAL
SIMULATION USING PROPORTIONAL NAVIGATION GUIDANCE

- % Written by: Rui Manuel Alves Francisco
% Date: 14 October 1992
%0 This Program simulates the terminal phase of a 3-D missile/target

% engagement using classical proportional navigation.

clear

clg

% DEFINE CONSTANTS

dt = .Gl; % Sampling time |

Tf = 100; % maxisnum simulation time X

kmax = Tf/dt+1, »

n=3% naviga-tion constant : _

N=[n0 B
0n};

% DEFINE STATE EQUATIONS

% Missile

% X = [xm = missiie‘s X coordinate

) xmd = missile‘s speed (x coordinate)

Yo ym = missile‘s y coordinate

e ymd = mussile‘s speed (y coordinate)

Yo zm = missile‘s z coordinate ,
% zmd = missile‘s speed (z coordinate)] .
Am=[{010000

000600
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goo1l00
000000
000001
000000,
Bm=[000 -
100
009
010
000
001];
9o Target
% Xt =[xt = target’s x coordinate.
% xtd = target’s speed (x coordinate)
% yt = target’s y coordinate
% ytd = target‘s speed (y coordinate)
% zt = target‘s z coordinate
%% ztd = target‘s speed (z coordinate)]
At=[010000
000000
000100
000000
000001
000000j3;
Bt=[000
100 .
000
010
000
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001}

% Seeker (Radar)
% Xsk = [beta_pitch = seeker’s pitch angle
% betad_pitch = seeker’s pitch angle rate
o beta_yaw = seeker’s yaw angle
% betad_yaw = seeker’s yaw angle rate]
Ask=[0 1 0 0
-100 -20 0 0
0 O 0 1
0 0 -100-20];
Bsk=[00
1000
00
0 100];
% Guidance System
% Xgs = [a_m_pitch = missile’s pitch acceleration
% a_m_yaw = missile’s yaw acceleration]
Ags=[-10
0-1J;
Bgs=[10
01}
% INITIALIZE STATE VARIABLES (when the missile enters into the terminal
phase of flight)
% Missile
Xm(G,D=[ O % The missile is in a collision triangle
2828 % with the target when the missile enters into
0 % the terminal phase of flight

1000




0
47.1339};
% Target
Xt(:,1) = [30000
0
0
1000
500
0L
% DISCRETE REPRESENTATION
[PHIm,DELm] = c2d(Am,Bmi,dt);
[PHIt,DELt] = c2d(At,Bt,dt);
[PHIsk,DELsk] = c2d(Ask,Bsk,dt);
[PHIgs,DELgs] = c2d(2.gs,Bgs,dt);
%LINE OF SIGHT (LOS) INFORMATION. INITIAL CONDITIONS.
% Missile '
% LAMBDA _m = Missile’s LOS from the global coordinate system
% LAMBDA_m = [LAMBDA_m_pitch = Missile’s pitch LOS angle
% LAMBDA _m_yaw = Missile’s yaw LOS angle]
LAMBDA_m(:;,1) = [atan2(Xm(5,1),sqrt(Xm(1,1)*2+Xm(3,1)A2));
atan2(Xm(3,1),Xm(1,1))];
% Target

% LAMBDA_t = Target’s LOS from the global coordinate system

% LAMBDA_t = [LAMBDA_t_pitch = Target's pitch LOS angle

% LAMBDA_t_yaw = Target’s yaw LOS angle]

LAMBDA_t(:,1) = [atan2(Xt{5, 1),sqrt(Xt(1.1)A2+Xt(3,1)2));
atan2(Xt(3,1),Xt(1,1)];

% LOS from Missile to Target
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% LAMBDA = LOS from Missile to Target.

% LAMBDA = [LAMBDA _pitch = LOS angle in pitch

% LAMBDA _yaw = LOS angle in yaw],

LAMBDA(;,1) = [atan2((Xt(5,1)-Xm(5,1)),sqrt((Xt(1,1)-Xm(1,1))"2
+(Xt(3,1)-Xm(3,1))42));
atan2((Xt(3,1)-Xm(3,1)),abs(Xt(1,1)-Xm(1,1)))];

% MISSILE and TARGET FLIGHT PATH ANGLES INFORMATION

% Missile

%GAMMA _m = [GAMMA _m_pitch = Missile’s flight path angle in pitch

/) GAMMA _m_yaw = Missile’s flight path angle in yaw]

GAMMA_m(;,1) = [atan2(Xm(6,1),sqre(Xm(2,1)A2+Xm(4,1)22));

atan2(Xm(4,1),Xm(2,1))];

% Target
%GAMMA _t = [GAMMA _t_pitch = Target’s flight path angle in pitch
% GAMMA_t_YAW = Target’s flight path angle in yaw]

GAMMAL_t(;,1) = [atan2(Xt(6,1),sqrt(Xt(2,1)A2+Xt(4, 1)72));
atan2(X1t(4,1),Xt(2,1)];

% RANGE INFORMATION

% Mlissile

% Rm = Missile’s range

Rm(1) = sqrt(Xm(1,1)A2 + Xm(3,1)A2 + Xm(5,1)A2);

% Target

% Rt = Target’s range

Rt(1) = sqrt(Xt(1,1)42 + Xt(3,1)A2 + Xt(5,1)72);

% Missile/Target relative distance

% R = [Kmtx = Missile/Target x coordinate range

Yo Rmty = Missile/Target y coordinate range

% Rmtz = Missile/Target z coordinate range
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% Rmt = Missile/Target relative distance(Rmt=sqrt(RmtxA2+Rmty"2+Rmtz"2))]
R(,1) = [Xe(1,1)-Xm(1,1)

Xt(3,1)-Xm(3,1)

Xt(5,1)-Xm(5,1)

sqrt((Xe(1,1)-Xm(1,1))A2+(Xe(3,1)-Xm(3, 1))A2+(Xt(5,1)-Xm(5, 1)) A2)];
% VELOCITY INFORMATION
% Missile
% Vm = Missile’s Speed
Vm(l) = sqrt(Xm(2, 1)A2+Xm(4,1)A2+Xm(6,1)2);
% Target
% Vt = Target‘s Speed
Vi(1) = sqrt(Xt(2,1)*2+Xt(4,1) 2+ Xt(6,1)72),
% Speed along the pitch and yaw LOS. Pitch and yaw closing speeds
Vt_pitch(1) = Vi(1)*cos(LAMBDA(2,1)-GAMMA_t(2,1));
Vm_pitch(1) = Vm(1)*cos(LAMBDA(2,1)-GAMMA _m(2,1));
Ve_pitch(l) = Vm_pitch(1)*cos(GAMMA _m(1,1)-LAMBDA(1,1))
-Vt_pitch(1)*cos(GAMMA_t(1,1)-LAMBDA(L,1));
Vt_yaw(l) = Vt(1)*cos(GAMMA_t(1,1));
Vm_yaw(l) = Vm(1)*cos(GAMMA _m(1,1));
Ve_yaw(l) = Vm_yaw(1)*cos(GAMMA_m(2,1)-LAMBDA(2,1))
-Vt_yaw(1l)*cos(GAMMA_t(2,1)-LAMBDA(2,1));
V¢ =[Vc_pitch(1) 0
0 Ve_yaw(1)];
% SEEKER and GUIDANCE SYSTEM INITIAL CONDITIONS and BIPUTS.
% Seeker
Xsk(:,1) = [0
0
0




Q%
Usk(:,1) = LAMBDAC,1); % Seeker input

% Guidance System

Xgs(:,1)=[0
0l
Ugs(:,1) = N*Ve*[Xsk(2,1) % Guidance system input
Xsk(4,1)];
% TIME

% Time = Time vector
TIME(1) = 0;
% Tgo = Time to go
Tgo(1) = R(4,1)/Vc_pitch(1);
% SIMULATE THE SYSTEM
for ti =0:.25:21.25
fori= l:kmax-1
% Calculate componenté of the missile’s pitch acceleration
a_mx_pitch(i) = -(Xgs(1,i)*sin(LAMBDA(1,i))¥*cos(LAMBDA(2,1)));
a_my_pitch(i) = -(Xgs(1,i)*sin{LAMBDA(1.1))*sin(LAMBDA(2,1)));
a_mz_pitch(1) = Xgs(1,i)*cos(LAMBDA(1,1));
% Calcuiate components of the missile’s yaw acceleration
a_mx_yaw(i) = -Xgs(2,i)*sin(LAMBDA(2,i));
a_my_yaw(i) = Xgs(2,i)*cos(LAMBDA(2,i));
% Compute overall missile acceleration
a_mx(i) = a_mx_pitch(i)+a_mx_yaw{i);
a_my(i) = a_my_pitch(i)+a_my_yaw(i),
a_mz(i) = a_mz_pitch(i);
am(:,1) = [a_mx(i)

a_my(i)
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a_maz(i)];

% Compute missile’s acceleration magnitude
a_m(i) = sqrt(a_mx(i)*2 + a_my(i)A? + a_mz(i) 2);
% Generate target’s evasive maneuver (we assume that these accelerations, along
% the three cartesian cxis, are estimated using the missile's image processing iy
% capabilities)
if TIME(i) >= ti/2 % target starts evasive maneuver

a_tx(i) = 3*32.2*sin(GAMMA._t(2,1));

a_ty(i) = 4*32.2*%cos(GAMMA_t(2,1)),

a_tz(i) = 3*%32.2*cos(GAMMA _t(1,1));
else

a_tx(i) =0.0;

a_ty(i) =0.0;

a_tz(i) =0.0;
end
at(:,i) = la_tx(i)

a_ty()
a_tz(i)l;

% Compute magnitude of the target’s acceleration
a_t(i) = sqrt(a_tx(i)*2 + a_ty(i)2 + a_tz(i)*2);
% Update missile states
Xm(:,i+1) = PHIm*Xm(:,i}+ DELm*am(:,i);
% Update target states
Xt(:,i+1) = PHIt*Xt(:,1)+DELt*at(:,i);
% Update seeker states
Xsk(:,i+1) = PHIsk*Xsk(:,))+DELsk*Usk(:,1);
% Update Guidance Systen states
Xgs(:,i+1) = PHIgs*Xgs(:,i)+DELgs*Ugs(:.i);
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% Limit yaw and pitch accelerations to 25 g’s
if abs(Xgs(1,i+1)) > 805.0
Xgs(1,i+1) = 805.0 *sign(Xgs(1,i+1));
end
if abs(Xgs(2,i+1)) > 805.0
Xgs(2,i+1) = 805.0 *sign(Xgs(2,i+1));
end
% Update LOS angles
LAMBDAC,i+1) = [atan2((Xt(5,i+1)-Xm(5,i+1)),sqrt((Xm(1,i+1)-Xt(1,i+1))A2
+(Xm(3,i+1)-Xt(3,i+1))A2)),
atan2((Xt(3,i+1)-Xm(3,i+1)).abs(Xm(1,i+1)-Xt(Li+ 1))))];
Usk(:,i+1) = LAMBDA(:,i+1);
LAMBDA_m(:,i+1) = [atan2(Xm(5,i+1),sgrt(Xm(1,i+1)A24+Xm(3,i+1)A2));
atan2(Xm(3,i+1),Xm{1,i+1))];
LAMBDA_t(:,i+1) = [atan2(Xt(5,i+1),sqre(Xt(1,i+ 1)A2+Xt(3,i+1)42));
atan2(Xt(3,i+1),Xt(1,i+1))];
% Update flight path angles
GAMMA _m(:,i+1) = [atan2(Xm(6,i+1),sqrt(Xm(2,i+ 12+ Xm(4,i+1)72));
atan2(Xm(4,i+1),Xm(2,i+1))];
GAMMAL_t(:,i+1) = [atan2(Xt(6,i+1),sqrt(Xt(2,i+1)A2+Xt(4,i+1)A2));
atan2(Xt(4,i+1),Xt(2,i+1))];
% Update Range Information
Rm(i+1) = sqrt(Xm(1,i+1)A2 + Xm(3,i+1)A2 + Xm(5,i+1)A2);
Rt(i+1) = sqrt(Xt(1,i+1)A2 + Xt(3,i+1)A2 + Xt(5,i+1)72);
R(,i+1) = [Xt(1,i+1)-Xm(J ,i+1);
Xt(3,i+1)-Xm(3,i+1);
Xt(5,i+1)-Xm(5.i+1);
sqre((Xe(1,i+1)-Xm(1Li+1)A24+(Xt(3,i+1-Xm(3,i+1))A2
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+(Xt(5,i+1)-Xm(5,i+1))A2)];
% Update Velocity Information
Vm(i+1) = sqrt{Xm(2,i+1)A2+Xm(4,1+ 1 )22+Xm(6,i+1)2);
Vit(i+1) = sqrt(Xt(2,i+ 1 )A2+ Xt(4,i+ 1)A2+Xt(6,i+1)72);
Vi_pitch(i+1) = Vt(i+1)*cos{LAMBDA(2,i+1)-GAMMA _t(2,i+1));
Vm_pitch(i+1) = Vm{i+1)*cos(LAMBDA(2,i+1)-GAMMA _m(2,i+1));
Ve_pitch(i+1) = Vm_pitch(i+1)*cos(GAMMA_m(1,i+1)-LAMBDA(L,1+1))
-Vt_pitch(i+1)*cos(GAMMA_t(1,i+1)-LAMEDAC(],i+1));
Vi_yaw(i+1) = Vt(i+1)*cos(GAMMA _t(1,i+1));
Vm_yaw(i+1) = Vm(i+1)*cos(GAMMA_m(1,i+1)),
Ve_yaw(i+1) = Vm_yaw(i+1)*cos(GAMMA _m(2,i+1)-LAMBDA(2,i+1))
-Vt_yaw(i+1)*cos(GAMMA_t(2,i+1)-LAMBDA(2,i+1));
Ve =[Vc_pitch(i+1) O
0 Ve_yaw(i+1)];

% Update guidance system input
Ugs(:,i+1) = N¥Ve*[Xsk(2,i+1)
Xsk(4,i+1)];
% Update Time/time to go
TIME(i+1) = TIME(i)+dt;
Tgo(i+1) = R(4,i+1)/Vc_pitch(i+1);
% Check for closest point
if (R(4,i) < R(4,i+1)),break,end
end;
% Save information for plotting and evaluation
R1(4*ti+1) = R{4,i); % miss distance
Ti(4*t+1) = ti/2;% starting time of evasive maneuver (EM)
tgo(4*ti+1) = i*dt-ti/2; % time to go until end of flight

if ti == 12.0 % Record information for a target that

1'0



% initialized the evasive maneuver 6 sec after the missile

% entered into the terminal phase of flight.
TGO = tgo(49);
Xseeker = Xsk(:,1:1);
. Xgsys = Xgs(,1:1);
lambda_m = LAMBDA_m(;, 1:i);
lambda_t = LAMBDA_:(,,1:1);
lambda = LAMBDAC(:,L:i);
gamma_m = GAMMA_m(.,1:i);
gamma_t = GAMMA_t(,1:1);
r=R(,1:1);
vm = Vm(l:i);
vt = Vi(l:1);
vm_pitch = Vm_pitch(1:i);
vt_pitch = Vi_pitch(1:i);
vm_yaw = Vrﬁ_yaw(l :1);
vt_yaw = Vt_yaw(l:i);
ve_pitch = Ve_pitch(1:i);
vc_yaw = Ve_yaw(1:1);
tGO = Tgo(l:i);
a_M =am(,l:i);
a_T=at(;,l:i);
A_t=a_t(l:i);
A_m=a_m(l:i),
time = TIME(1:1);
end
clear R;

R(,1) = [Xt(1,1)-Xm(1,1);
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Xt(3,1)-Xm(3,1);
X4(5,1)-Xm(5,1);
sqre((Xe(1,1)-Xm(1,1)A2+(Xt(3,1)-Xm(3, 1)) 2+(Xt(5,1)-Xm(5, 1) 2)];
end,
save thesis1p343 R1 tgo Ti GO missile target TGO Xseeker Xgsys lambda_m ¥
lambda_t lambda gamma_m gamma_t r vm vt vm_pitch vm_yaw vt_pitch
vt_yaw vc_pitch ve_yaw a_M a_T time A_t A_m
PLOTS
% Miss distance information
plot(Ti,R1),title(‘MISS DISTANCE vs INITIAL TIME, PROPNAV")
xlabel(‘INITIAL TIME - SEC’),ylabel(‘MISS - FEET")
print -dps Rlapi
'pstoepsi Rlapl.ps Rlapl.epsi
pause,clg
plot(tgo,R 1),title(‘MISS DISTANCE vs TIME TO GO, PROPNAV’)
xlabel(*TIME TO GO - SEC’),ylabel(‘MISS - FEET’)
print -dps R1bpl
'pstoepsi R1bpl.ps R1bpl.epsi
pause,clg
% Missile acceleration information
plot(time,A_m),title(“MISSILE ACCELERATION MAGNITUDE vs TIME,
PROPNAV’)

print -dps A_mpl

Ipstoepsi A_mpl.ps A_mp!l.epsi

pause,clg

plot(time,Xgsys(1,:)),title(‘MISSILE PITCH ACCELERATION vs TIME,
PROPNAV’)
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xlabel(‘TIME - SEC’),ylabei(‘FEET/SECA2’)

print -dps Xgsyslpl

Ipstoepsi Xgsyslpl.ps Xgsyslpl.epsi

pause,clg

plot(time,Xgsys(2,:)),title(‘MISSILE YAW ACCELERATION vs TIME,

PROPNAV’)

xlabel(*TIME - SEC’),ylabel(‘FEET/SECA2’)

print -dps Xgsys2pl

Ipstoepsi Xgsys2pl.ps Xgsys2pl.epsi

pause,clg

% Target acceleration information

plot(time,A _t),title(“TARGET ACCELERATION MAGNITUDE vs TIME,
PROPNAV’)

xlabel(‘TIME - SEC’),ylabel(‘FEET/SECA2’)

print -dps A_tpl

'pstoepsi A_tpl.ps A_tpl.epsi

pause,clg

% Seeker pitch and yaw angles

plot(time,Xseeker(1,:)),titie(‘SEEKER PITCH ANGLE vs TIME, PROPNAV”)

xlabel(‘TIME - SEC’),ylabel(‘RAD’)

print -dps Xseekerlpl

Ipstoepsi Xseekerlpl.ps Xseekerlpl.epsi

pause,clg

plot(time,Xseeker(3,:)),title(‘SEEKER YAW ANGLE vs TIME, PROPNAV")

xlabel(‘TIME - SEC’),ylabel(‘RAD”’)

print -dps Xseeker2p!

Ipstoepsi Xseeker2pl.ps Xseeker2pl.epsi

pause,clg
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plot{time,Xseeker(2.:)),title('SEEXKER PITCH ANGLE RATE vs TIME,
PROPNAV’)

xlabei(‘TIME - SEC’),ylabel(‘RAD/SEC")

print -dps Xseeker3pl

Ipstoepsi Xseeker3pl.ps Xseeker3pl.epsi

pause,clg

plot(time,Xseeker(4,:)),title(' SEEKER YAW ANGLE RATE vs TIME,

PROPNAV’)

xlabel(‘TIME - SEC’),ylabel(‘RAD/SEC’)

print -dps Xseekerdpl

Ipstoepsi Xseekerdpl.ps Xseekerdp!l.epsi

pause,clg

% Range information

plot(time,r(4,:)),title(‘RANGE vs TIME, PROPNAV”)

xlabel(‘TIME - SEC’),ylabel(‘FEET’)

print -dps rpl '

'pstoepsi rpl.ps rpl.epsi

pause,clg

% Missile velocity infermation

plot(time,vm),iitle(‘MISSILE SPEED vs TIME, PROPNAV?)

xlabel(“TIME - SEC’),ylabel(‘FEET/SEC’)

print -dps vmpl

!pstoepsi vinpl.ps vmpl.epsi

pause,clg

% Target velocity information

plot(time, ) title(‘TARGET SPEED vs TIME, PROPNAV”’)

xlabel(‘TIME - SEC’),ylabel(‘FEET/SEC’)

print -dps vipl
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Ipstoepsi vipl.ps vtpl.epsi

pause,clg

% Closing velocity information

plot(time,ve_pitch),title(‘PITCH CLOSING SPEED, PROPNAV’)
xlabel(*'TIME - SEC"),ylabel(‘FEET/SEC’)

print -dps velpl

Ipstoepsi velpl.ps velpl.epsi

pause,clg

plot(time,vc_yaw),title(‘YAW CLOSING SPEED vs TIME, PROPNAV’)
xlabel(‘TIME - SEC’),ylabel(‘FEET/SEC’)

print -dps ve2pl

!pstoepsi ve2pl.ps ve2pl.epsi

pause,clg

e i e T

e AR
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APPENDIX B - MISSILE/TARGET THREE DIMENSIONAL
SIMULATION USING AUGMENTED PROPORTIONAL NAVIGATION
GUIDANCE

% Written by: Rui Manuel Alves Francisco
% Date: 10 November 1992
% This Program simulates the terminal phase of a 3-D missile/target

% engagement using augmented proportional navigation guidance.

clear
clg
% DEFINE CONSTANTS
dt = .01; % Sampling time
Tt = 100; % maximum simulation time
kmi > = TE/dt+1; |
n = 3; % navigation constant
N=hno
0nj;
% DEFINE STATE EQUATIONS
% Missile

% Xm = [xm = missile‘s ¥ coordinate

% xmd = missile‘s speed (x coordinate)
% ym = missile’s y coordinate
% ymd = missile‘s speed (y coordinaie)
‘ % zm = missile ‘s z coordinate
% zmd = missile‘s speed (z coordinate)]

Am=[010000
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000000
000100
000000
000001
000000]
Bm=[000
100
000
010
000
001}
% Target
% Xt = [xt = target’s X coordinate
% xtd = target’s speed (x coordinate)
% yt = target’s y coordinate
% ytd = target‘s speed (y coordinate)
% zt = target's z coordinate
Y% ztd = target's speed (z coordinate)]
At=[010000
000000
0006100
000000
(00001
000000}
Bt=[000
100
000
010
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600
001}
% Seeker (Radar)
% Xsk = [beta_pitch = seeker’s pitch angle

% betad_pitch = seeker’s pitch angle rate
Y/ beta_yaw = seeker’s yaw angle
% betad_yaw = seeker’s yaw angle rate]
Ask=[0 1 0 0
-100-20 0 O
0 0 0 1
0 0 -100-20];
Bsk=[00
100 0 -
0 0 "
0 100);

% Guidance System

% Xgs = [a_m_pitch = missile’s pitch acceleration

% a_m_yaw = missile’s yaw acceleration]
Ags=[-10
0-11
f Bgs=[10
01];
% INITIALIZE STATE VARIABLES (when the missile enters into the terminal
i phase of flight)
% Missile
Xm(;,,)=[ O % The missile is in a collision triangle
‘. 2828 % with the target when the missile enters into
: 0 % the terminal phase of flight
t
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1000

0
47.1339};
% Target
Xt(:,1) = [30000
109G
500
0%

% DISCRETE REPRESENTATION

[PHIm,DELm] = ¢2d(Am,Bm,dt);

[PHIt,DELt] = c2d(At,Bt,dt),;

[PHIsk,DELSsk] = c2d(Ask,Bskt);

[PHIgs,DELgs] = c2d(Ags,Bgs,dt);

% LINE OF SIGHT (LOS) INFORMATION. INITIAL CONDITIONS.

% Missile

% LAMBDA _m = Missile’s LOS from the global coordinate system

% LAMBDA_m = [LAMBDA_m_pitch = Missile’s pitch LOS angle

% LAMBDA_m_yaw = Missile's yaw LOS angle]

LAMBDA_m(;,1) = [atan2(Xm(5,1),sqrt(Xm(1,1)*24+-Xm(3,1)A2));
atan2(Xm(3,1),Xm(1,1))];

% Target

% LAMEDA_t = Target’s LOS from the global coordinate system

% LAMBDA_t = [LAMBDA_t_pitch = Target’s pitch LOS angle

Yo LAMBDA_t_yaw = Target’s yaw LOS angle]

LAMBDA_t(;,1) = [atan2(Xt(5, 1),sqrt(Xt(1,1)"2+Xt(3,1)42)),
atan2(Xt(3,1),Xt(1,1)1;
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% LOS from Missile to Target '
% LAMBDA = LOS from Missile to Target. !

% LAMBDA = [LAMBDA _pitch = LOS angle in pitch .
%o LAMBDA _yaw = LOS angle in yaw];
LAMBDAC(;,1) = [atan2((Xt(5,1)-Xm(§,1)),sqrt((Xt(1,1)-Xm(1,1))A2 )

+(Xt(3,1)-Xm(3,1))42));
atan2((Xt(3,1;-Xm(3,1)),abs(Xt(1,1)-Xm(1,1)))];
% MISSILE and TARGET FLIGHT PATH ANGLES INFORMATION

% Missile

%GAMMA _m = [GAMMA _m_pitch = Missile’s flight path angle in pitch

% GAMMA _m_yaw = Missile’s flight path angle in yaw]

GAMMA_m(,1) = [atan2(Xm(6,1),sqrt(Xm(2,1)A2+Xm(4,1)A2)),
atan2(Xm(4,1),Xm(2,1))]:

% Target

7%GAMMA_t = [GAMMA_t_pitch = Target’s flight path angle in pitch

%% GAMMA_t_YAW = Target's flight path angle in yaw]

GAMMAL_t(;,1) = {atan2(Xt(6, 1),sqrt(Xe(2, 1)A2+Xt(4,1)2)),
atan2(Xt(4,1),Xt(2,1))];

% RANGE INFORMATION

% Missile

% Rm = Missile’s range

Rm{l) = sqrt(Xm(1,1)A2 4+ Xm(3,1)"2 + Xm(5,1)*2);

% Target

% Rt = Target’s range

Rt(1) = sqrt(Xt(1,1)22 + Xt(3,1)A2 + Xt(5,1)72);

% Missile/Target relative distance

% R = [Rmtx = Missile/Target x coordinate range

%% Rmty = Missile/Target y coordinate range
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%o Rmtz = Missile/Target z coordinate range
% Rmt = Missile/Target relative distance(Rmt=sqrt(RmtxA2+RmtyA2+RmtzA2))]
R(,1) = [Xt(1,1)-Xm(1,1)

Xt(3,1)-Xm(3,1)

Xt(5,1)-Xm(5,1)

sqre((Xe(1,1)-Xm{1, 1))A2+(Xt(3,1)-Xm(3, 1 ) 2+(Xt(5,1)- ¥Xm(5, 1)AD)1;
% VELCCITY INFORMATION
% Missile
% Vm = Missile’s Speed
Vm(l) = sqre(Xm(2,1)A2+Xm(4,1)A2+Xm(6,1)72);
% Target
% Vt = Target’s Speed
V(1) = sqri(Xt(2,1)"2+Xt(4,1)72+X1(6, 1)72);
% Speed along the pitch and yaw LOS. Pitch and yaw closing speeds
Vt_pitch(1) = Vt(1)*cos(LAMBDA(2,1)-GAMMA_t(2,1));
Vm_pitch(1) = Vm(1)*cos(LAMBDA(2,1)-GAMMA _m(2,1));
Vce_piteh(1) = Vm_pitch(1)*cos(GAMMA _m(1,1)-LAMBDA(1,1))
-Vt_pitch(1)*cos(GAMMA_t(1,1)-LAMBDAC(1,1));
Vt_yaw(i) = Vi(1)*cos(GAMMA_t(1,1));
Vm_yaw(l) = Vin(1*cos(GAMMA _m(1,1));
Ve_yaw(1) = Vm_yaw(l)*cos(GAMMA _m(2,1)-LAMBDA(2,1))
-Vt_yaw(1)*cos(GAMMA_t(2,1)-LAMBDA(2,1));
Ve = [Ve_pitch(1) 0
0 Ve_yaw(1)];
90 SEEKER and GUIDANCE SYSTEM INITIAL CONDITIONS and INPUTS.
% Seeker |
Xsk(:,1)=[0
0
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0
0l;
Usk(:,1) = LAMBDA(,1); % Seeker input

% Guidance System

Xgs(:,1)=[0
0%
Ugs(:,1) = N*Vc*[Xsk(2,1) % (Guidance system input
Xsk(4,1)];
% Initial conditions of the target’s acceleration
a_tx(1) =0,
a_ty(l) =0
a_tz(l) =0;
a_t(l) = (;

a_t_pitch(l) =0
a_t_yaw(l) =0

TETA_t(1) =(; % angle between the acceleration vector and the yaw plane
PHI_t(1) = (; % yaw angle of the target’s acceleration vector
% TIME

% Time = Time vector

TIME(1) =0,

% Tgo = Time to go

Tgo(1) =R(4,1)/Vc_pitch(l);

% SIMULATE THE SYSTEM

for ti = 0:.25:21.25

for i = l:kmax-1

% Calculate components of the missile’s pitch acceleration vector
a_mx pitch(i) = -(Xgs(1,1)*sin(LAMBDA(L,i))*cos(LAMBDA(2,1)));
a_my_pitch(i) = -(Xgs(1,1)*sin{LAMBDAC(1,1))*sin(LAMBDA(2,1)));
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a_mz_pitch(i) = Xgs(1,i)*cos(LAMBDAC(L,1));
% Calculate components of the missile’s yaw acceleration vector
a_mx_yaw(i) = -Xgs(2,1)*sin(LAMBDA(2,1)),
a_my_yaw(i) = Xgs(2,1)*cos(LAMBDA(2,1));
% Compute overall missile acceleration components
a_mx(i} = a_mx_pitch(i)+a_mx_yaw(i);
a_my(i) = a_my_pitch(i)+a_my_yaw(i);
a_mz(i) = a_mz_pitch(i);
am(:,1) = [a_mx(i)
a_my(i)
a_mz(i})];
% target acceleration vector
at(:,i) = [a_tx(i)
a_ty()
a_tz(i)];

% Compute magnitude of the missile’s acceleration
a_m(i) = sqrt(a_mx(i)A2 + a_my(i)2 + a_mz(i)"2);
% Generate target’s evasive maneuver (we assume that these accelerations, along
% the three cartesian axis, are estimated using the missile’s image processing
% capabilities)
if TIME(i) >=ti/2 % target starts evasive maneuver

a_tx(i+1) = 3*32.2*sin(GAMMA_t(2,));

a_ty(i+1) = 4*32.2*cos(GAMMA _t(2,1));

a_tz(i+1) = 3*32.2*cos(GAMMA _t(1,1));
else

a_tx(i+1) =0.0;

a_ty(i+1) = 0.0;

a_tz(i+1)=0.0;
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end
% Compute magnitude of the target’s acceleration
a_t(i+1) = sqrt(a_tx(i+1)A2 + a_ty(i+1)2 + a_tz(i+1)A2);
% Update missile states
Xm(:,i+l) = PHIm*Xm(:,i)+DELm*am(:,i);
% Update target states
Xt(:,i+1) = PHIt*Xt(:,i)+DELt*at(:,i);
% Update flight path angles
GAMMA_m(:,i+1) = [atan2(Xm(6,i+1),sqrt(Xm(2,i+1)A2+Xm(4,i+1)72));
atan2(Xm(4,i+1),Xm(2,i+1))];
GAMMA_t(;,i+1) = [atan2(Xt(6,i+1),sqrt(Xt(2,i+ 1)A2+Xt(4.i+1)42));
atan2(Xt(4.i+1),Xt(2,i+1))];
% Update seeke- states
Xsk(:,i+1} = PHIsk*Xsk(:,i)+DELsk*Usk(:,i);
% Update Guidance System states
Xgs(:,i+1) = PHIgs*Xgs(:,i)+DELgs*Ugs(:.1);
% Limit yaw and pitch accelerations to 25 g's
if abs(Xgs(1,i+1)) > 805.0
Xgs(1,i+1) = 805.0 *sign(Xgs(1,i+1));
end
if abs(Xgs(2,i+1)) > 805.0
Xgs(2,i+1) = 8G5.0 *sign(Xgs(2,i+1));
end
% Update LOS angles
LAMBDAC(.,i+1) = [atan2((Xt(5,i+1)-Xm(5,i+1)),sqre¢((Xm(1,i+1)-Xt(1,i+1))A2
+HXm(3,i+1)-Xt(3,i+1))"2));
atan2((Xt(3,i+1)-Xm(3,i+1)),(abs(Xm(1,i+1)-Xt(1.i+1)))];
Usk(:,i+1) = LAMBDA,i+1),
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LAMBDA _m(:,i+1) = [atan2(Xm(5,i+1),sqrt(Xm(1,i+1)A2+Xm(3,i+1)A2));
atan2(Xm(3,i+1),Xm(1,i+1))];
LAMBDA_t(:,i+1) = [atan2(Xt(5,i+1),sqrt(Xt(1,i+ 1)A2+Xt(3,1+1)72));
atan2(Xt(3,1+1),Xt(1,i+1))];
% Update Range Information
Rm(i+1) = sqrt(Xm(1,i+1)A2 + Xm(3,i+1)*2 + Xm(5,i+1)72);
Ri(i+1) = sqrt(Xe(1,i+1)"2 + Xt(3,i+1)22 + Xt(5,i+1)A2);
R(,i+1) = [Xt(1,i+1)-Xm(1,i+1);
Xt(3,1+1)-Xm(3,i+1),
Xt(5,i+1)-Xm(5,i+1);
sqre((Xe(L,i+ 1) - Am(Li+1))A2+(Xt(3,1+1)-Xm(3,i+1))A2
+(Xt(5.1+1)-Xm(5,i+1))A2)];
7% Update Velocity Information
Vm(i+1) = sqre(Xm(2,i+1)M2+Xm(4,i+1)A24+X1m(6,i+1)A2),
Vi(i+1) = sqrt(Xt(2,i+ 1) 2+ Xt(4,i+ 1)A24+ X1(6.1+1)72);
Vt_pitch(i+1) = Vt(i+1)*cos(LAMBDA(2,i+1)-GAMMA _t(2,i+1));
Vm_pitch(i+1) = Vm(i+1)*cos(LAMBDA(2,i+1)-GAMMA_m(2,i+1));
Ve_pitch(i+1) = Vm_pitch(i+1)*cos(GAMMA _m(1,i+1)-LAMBDA(L,i+1))
-Vt_pitch(i+1)*cos(GAMMA _t(1,i+1)-LAMBDA(1,i+1));
Vi_yaw(i+1) = Vt(i+1)*cos(GAMMA _t(1,i+1));
Vm_yaw(i+1) = Vm(i+1)*cos(GAMMA_m(1,i+1));
Ve_yaw(i+1) = Vm_yaw(i+1)*cos(GAMMA_m(2,i+1)-LAMBDA(2,i+1))
-Vt_yaw(i+1)*cos(GAMMA_t(2,i+1)-LAMBDA(2,i+1));
Ve = [Ve_pitch(i+1) 0
0 Ve_yaw(i+1)];
% Calculate angles of the target’s acceleration
TETA_t(i+1) = atan2(a_tz(i+1),sqrt(a_tx(i+1)~2+a_ty(i+1)72));
PHI_t(i+1) = atan2(a_ty(i+1),a_tx(i+1));
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% Calculate the components of the target’s acceleration normal to the LOS
a_t_pitch(i+1) = -a_t(i+ 1)*cos(LAMBDA(2,i+1)-PHI_t(i+1))
*sin(LAMBDA(L,i+1)-TETA_t(i+1));
a_t_yaw(i+1) = -a_t(i+1)*cos(TETA_t(i+1))*sin(LAMBDA(2,i+1)-PHI_t(i+1));
% Update guidance system input
Ugs(,i+1) = N*¥(Vc*[Xsk(2,i+1); Xsk(4,i+1)]
+.5*a_t_pitch(i+1);a_t_yaw(i+1)]);
% Update Time/time to go
TIME(i+1) = TIME(i)+dt;
Tgo(i+1) = R(4.i+1)/Vc_pitch(i+1);
% Check for closest point
if (R(4,1) < R(4,i+1)),break,end
end,
% Save information for plotting and evaluation
R1(4*ti+1) = R(4,1); % miss distance
Ti(4*ti+1) =ti/2;% starting time of evasive maneuver (EM)
tgo(4*ti+1) = i*dt-ti/2; % time to go until end of flight
if ti == 12.0 % Record information for a target that
% initialized the evasive maneuver 6 sec
% after the missile entered into the terminal

TGO =tgo(49); % phase of flight

Xseeker = Xsk(:,1:1);

Xasys = Xgs(:,1:1);

lambda_m = LAMBDA_m(;,1:1);

lambda_t = LAMBDA_t(:,1:i);

lambde = LAMBDAC(:,1:1);

gamma_m = GAMMA_m(,1:i);

gamma_t = GAMMA _t(;,1:i),
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r=R(,1:);

vm = Vm(l:1);

vt = V(L)

vm_pitch = Vm_pitch(1:i);
vt_pitch = Vt_pitch(1:1);
vm_yaw = Vm_yaw(1:i);
vt_yaw = Vt_yaw(l:1);
ve_pitch = Ve_pitch(1:1),
ve_yaw = Ve_yaw(l:i);

tGO = Tgo(1:1);

a_M=am(,1:);
a_T =at(,L:1);
A_t=a_t(l:i);
A_m=a_m(l:i),
time = TIME(1:1);
end
clear R;

R(;,1) = [Xt(1,1)-Xm(1,1);
Xt(3,1)-Xm(3,1);
Xt(5,1)-Xm(5,1);
sqre((Xt(1,1)-Xm(1,1)M2+(Xt(3,1)-Xm(3,1))M2+(Xt(5,1)-Xm(5,1))A2)];
end;

save thesis2a343 R1 igo Ti 1GO mussile target TGO Kseeker Xgsys lambda_m
lambda_t lambda gamma_m gamma_tr vm vt vm_pitch vm_yaw vt_pitch
vt_yaw vc_pitch vc_yaw a_Ma_T time A_t A_m

PLOTS

% Miss distance information

plot(Ti,R1),title(‘MISS DISTANCE vs INITIAL TIME, APROPNAV”)
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xlabel(‘INITIAL TIME - SEC’),ylabel(‘MISS - FEET’)

print -dps Rlaal

!pstoepsi Rlaal.ps Rlaal .epsi

pause,clg

plot(tgo,R1),title(*‘MISS DISTANCE vs TIME TO GO, APROPNAV”)

xlabel(‘TIME TO GO - SEC’),ylabel(‘MISS - FEET’)

print -dps R1bal

!pstoepsi Ribal.ps R1lbal.epsi

pause,clg

% Missile acceleration information

plot(time,A_m),title(‘MISSILE ACCELERATION MAGNITUDE vs TIME,
APROPNAV’)

xlabel(‘TIME - SEC’),ylabel(‘FEET/SECA2’)

print -dps A_mal

Ipstoepsi A_mal.ps A_mal.epsi

pause,clg

plot(time,Xgsys(1,:)),title(‘MISSILE PITCH ACCELERATION vs TIME,

APROPNAV’)

xlabel(*“TIME - SEC”),ylabel(‘FEET/SECA2’)

print -dps Xgsyslal

Ipstoepsi Xgsyslal.ps Xgsyslal.epsi

pause,clg

plot(time, Xgsys(2,:)),titlc(*MISSILE YAW ACCELERATION vs TIME,

APROPNAYV’)

xlabel(“TIME - SEC’),ylabel(‘FEET/SECA2’)

print -dps Xgsys2al

Ipstoepsi Xgsys2al.ps Xgsys2al.epsi

pause,clg




% Target acceleration information

plot(time,A_t) titte(‘ TARGET ACCELERATION MAGNITUDE vs TIME,
APROPNAYV’)

xlabel(“TIME - SEC’),ylabel(‘FEET/SECA2")

print -dps A_tal

Ipstoepsi A_tal.ps A_tal.cpsi

pause,clg

% Seeker pitch and yaw angles

plot(time,Xseeker(1,:)),title(‘SEEKEK PITCH ANGLE vs TIME,APROPNAV")

xlabel(‘TIME - SEC’),ylabel(‘RAD’)

print -dps Xseekerlal

Ipstoepsi Xseekerlal.ps Xseekerlal.epsi

pause,clg

plot(time,Xseeker(3,:)) title(‘SEEKER YAW ANGLE vs TIME, APROPNAY")

xlabel(“TIME - SEC’),ylabel(‘RAD’)

print -dps Xsceker2al

Ipstoepsi Xseeker2al.ps Xseeker2al.epsi

pause,clg

plot(time,Xseeker(2,:7),title(‘SEEKER PITCH ANGLE RATE vs TIME,

APRCPNAV’)

xlabel(‘TIME - SEC’),ylabel(‘RAD/SEC’)

print -dps Xseeker3al

!pstocpsi Xseeker3al.ps

pause,clg

plot(time,Xseeker(4,:)),titl2(‘SEEKER YAW ANGLE RATE vs TIME,

APROPNAV’)
xlabel(‘TIME - SEC’),ylabel(‘RAD/SEC’)
print -dps Xseeker4al
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Ipstoepsi Xseekerdal.ps Xseekerdal.epsi

pause,clg

% Range information

plot(time,r(4,:)),title(‘RANGE vs TIME, APROPNAV’)
xlabel(“TTME - SEC’),ylabel(‘FEET")

print -dps ral

'pstoepsi ral.ps ral.easi

pause,clg

% Missile velocity information

plot(time,vm),title(‘MISSILE SFEED vs TIME, APROPNAV’)
xlabel(‘TIME - SEC"),ylabel(‘FEET/SEC’)

print -dps vmal

Ipstoepsi vmal.ps vmal.epsi

pause,clg

% Target velocity informnation

plot(time,vt),title(“TARGET SPEED vs TIME, APROPNAYV")
xlabel(“TIME - SEC’),ylabel(‘FEET/SEC’)

print -dps vtal

Ipstoepsi vtal.ps vtal.epsi

pause,clg

% Closing velocity information
plot(time,vc_pitch),title(‘PITCH CLOSING SPEED,APROPNAV’)

1 176r QTN

xavel(“TIME - SEC"),ylabel(‘FEET/SEC’)

print -dps velal

'pstoepsi vclal.ps velal.epsi

pause.clg

plot(time,vc_yaw),title(*'YAW CLOSING SPEED vs TIME, APROPNAV?)

xlabel(‘TIME - SEC’),ylatel(‘FEET/SEC’)
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print -dps vc2al

Ipstoepsi vc2al.ps vc2al.epsi

" pause,clg
’
5
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APPENDIX C - MISSILE/TARGET THREE DIMENSIONAL
SIMULATION USING OPTIMAL GUIDANCE

% Written by: Rui Manuel Alves Francisco
% Date: 09 December 1992
% This Program simulates the terminal phase of a 3-D issile/target

% engagement using optimal guidance.

clear

clg

% DEFINE CONSTANTS

dt = .01; % Sampling time

Tf = 100; % maximum simulation time
kmax = Tf/dt+1;

% DEFINE STATE EQUATIONS

% Missile

% Xm = [xm = missile‘s x coordinate

% xmd = missile‘s speed (x coordinate)
% ym = missile‘s y coordinate
% ymd = missile‘s speed (y coordinate)
% zm = missile‘s z coordinate

% zmd = missile‘s speed (z coordinate)]
Am=[010000

000000

000100

000000

000001
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000000}
Bm={000

100

000

010

000

6015
% Target

% Xt = [xt = target’s x coordinate
% xtd = target’s speed (x coordinate)
% yt = target’s y coordinate
% ytd = target‘s speed (y coordinate)
%o zt = target‘s z coordinate
% ztd = targets speed (z coordinate)]
At=[010000

000000

000100

000000

000001

0000060}
Bt=[000

100

000

010

000

00 1];
% Seeker (Radar)
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% Xsk = [beta_pitch = seeker’s pitch angle

% betad_pitch = seeker’s pitch angle rate
%o beta_yaw = seeker’s yaw angle
% betad_yaw = seeker’s yaw angle rate]
Ask=[0 1 0 0
-100-20 0 O
0 0 o0 1!
0 0 -160-20};
Bsk=[0 O
100 0
0 0
0 100L

% Guidance Systemn

% Xgs = [a_m_pitch = missile’s pitch acceleration

% a_m_yaw = missile’s yaw acceleration]
Ags=[-10
C-1L
Bgs=[10
01k

% INITIALIZE STATE VARIABLES (when the missile enters into the terminal
phase of flight)
% Missile
Xm(G,D=[ 0 % The missile is in a collision triangle

2828 % with the target when the missile enters into

0 % the terminal phase of fligh:
1000

0




47.1339];
% Target
Xt(:,1) = [30000
0
0
1000
500
0]
% DISCRETE REPRESENTATION
[PHIm,DELm] = c2d(Am,Bm,dt);
[PHIt,DELt] = c2d(At,Bt,d?);
[PHIsk,DELsk] = c2d(Ask,Bsk,dt);
[PHIgs,DELgs] = c2d(Ags,Bgs,dt);
% LINE OF SIGHT (LOS) INFORMATION. INITIAL CONDITIONS,
% Missile
% LAMBDA_m = Missile’s LOS from the globai coordinate syst. m
% LAMBDA _m = [LAMBDA_m_pitch = Missile’s pitch LOS angle
% LAMBDA_m_yaw = Missile’s yaw LOS angle]
LAMBDA _m(.,1) = [atan2(Xm(5,1),sqrt(Xm(1,1)*2+Xm(3,1)2));
atan2(Xm(3,1),Xm(1, 1))];
%0 Target
% LAMBDA _t = Target’s LOS from the global coordinate system
% LAMBDA _t = [LAMBDA_t_pitch = Target’s pitch LOS angle
%o LAMBDA_t_yaw = Target’s yaw LOS angle]
LAMBDA _t(;,1) = [atan2(Xt(5,1),sqrt(Xt(1, 1)42+Xt(3,1)2));
atan2(Xt(3,1),Xt(1,1))];
% LOS from Missile to Target
% LAMBDA = LOS from Missile to Target.
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% LAMBDA = [LAMBDA _pitch = LOS angle in pitch

% LAMBDA _yaw = LOS angle in yawl],

LAMBDAC(:,1) = [atan2((Xt(5,1)-Xm(5, 1)),sqrt((Xt(1,1)-Xm(1, (N2
+(Xt(3,1)-Xm(3,1))22));
atan2{(Xt(3,1)-Xm(3,1)),abs(Xt(1,1)-Xm(1,1)))];

% MISSILE and TARGET FLIGHT PATH ANGLES INFORMATION

% Missile

%GAMMA _m = [GAMMA_m_pitch = Missile’s flight path angle in pitch

% GAMMA _m_yaw = Missile’s flight path angle in yaw]

GAMMA _m(:,1) = [atan2(Xm(6,1),sqrt(Xm(Z,1)"2+Xm(4,1)A2));

atan2(Xm(4,1),Xm(2,1))];

% Target ,
%GAMMA_t = [GAMMA_t_pitch = Target’s flight path angle in pitch
% GAMMA_t_YAW = Target's flight path angle in yaw]

GAMMAL_t(:,1) = [atan2(Xt(6,1),sqrt(Xt(2,1)/2+Xt(4,1)*2));
atan2(Xt(4,1),Xt(2,1))];

% RANGE INFORMATION

% Missile

% Rm = Missile’s range

Rm(1) = sqrt(Xm(1,1)*2 + Xm(3,1)2 + Xm(5,1)2),

% Target

% Rt = Target’s range

Rt(1) = sqre(Xt(1,1)2 + Xt(3,1)2 + Xt(5,1)2);

% Missile/Target relative distance

% R = [Rmtx = Missil~/Target x coordinate range

%% Rmty = Missile/Target y coordinate range

%o Rmtz = Missile/Target z coordinate range

% Rmt = Missile/Target relative distunce(Rmt=sqrt(Rmtx 2+Rmty"2-+Rmtz"2))]
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R(.1) = [Xe(1,1)-Xm(1,1)

Xt(3,1)-Xm(3,1)

Xt(5,1)-Xm(5,1)

sqrt((Xt(1,1)-Xm(1,1))A2+(Xt(3,1)-Xm(3, ) A2+(Xt(5,1)-Xm(5,1))A2)],
% VELOCITY INFORMATICON
% Missile
% Vm = Missile’s Speed
Vm(l) = sqrt(Xm(2, )2+ Xm (4, 1)A2+Xm(6,1)22);
% Target
% Vt = Target’s Speed
V(1) = sqre(Xt(2, 1)M2+X1(4,1)A2+X1(6, 1)12);
% Speed along the pitch and yaw LOS. Pitch and yaw closing speeds
Vt_pitch(1) = Vt(1)Y*ces(LAMBDA(2,1)-GAMMA_t(2,1));
Vm_pitch(1l) = Vm(1)*cos(LAMBDA(2,1)-GAMMA_m(2,1)),
Ve_pitch(l) = Vm_pitch(1)*cos(GAMMA_m(1,1)-LAMBDA(1,1))
-Vi_pitch{1)*cos(GAMMA _t(1,1)-LAMBDAC(1.1));
Vi_yaw(l) = V(1) *cos(GAMMA_t(1,1));
Vm_yaw(l) = Vm(1)*cos(GAMMA_m(1,1));
Ve_yaw(l) = Vm_yaw(1)*cos(GAMMA_m(2,1)-LAMBDA(2,1))
-Vt_yaw(1)*cos(GAMMA_t(2,1)-LAMBDA(2,1));
Ve =[Ve_pitch(1) 0
0 Ve_yaw(1)];

% Tgo = Time to go

Tgo(1) = R(4,1)/Vc_pitch(l);

% Cptimal guidance coefficients

k=Tgo(l);

n = (6*kA2*(exp(-k)-1+k))/(2*¥kA3+3+6%Kk-6*kA2- 12*k*exp(-k)-3*exp(-2*Kk));
N=[nO




0 nj;
% SEEKER and GUIDANCE SYSTEM INITIAL CONDITIONS and INPUTS.
% Seeker

4
Xsk(,1)=(0
0 .
0
0l;
Usk(:,1) = LAMBDAC,1); % Secker input
% Guidance System
Xgs(:,1)=[0
0L
Ugs(:,]1) = N*Vc*[Xsk(2,1) % Guidance system input
Xsk(4,1)];
% Initial conditions of the target’s acceleration
a_tx(1) =0;
a_ty(l) =0,
a_tz(l) =(Q;
a_t(l) =0,
a_t_pitch(l) =0;
a_t_yaw(l) =0
TETA_t(1) =0; % angle between the acceleration vector and the yaw plane
PHI_t(1) =0, % yaw angle of the target’s acceleration vector
% Initial conditions of the missile’s acceleration
a_ m_pitch(1) =0;
a_m_yaw(1l) =0, ,
% TIME

% Time = Time vector

TIME(1) =0,




% SIMULATE THE SYSTEM
for ti = 0:.25:21.25

fori= l:kmax-1
% Calculate components of the missile’s pitch acceleration vector
a_mx_pitch(i) = -(Xgs(1,i)*sin(LAMBDA(1,1))*cos(LAMBDA(2,1)));
a_my_pitch(i) = -(Xgs(l,1)*sin(LAMBDA(1,1))*sin(LAMBDA(2,1)));
a_mz_pitch(i) = ¥gs(1,i)*cos(LAMBDA(1,1));
% Calculate missile’s yaw acceleration vector components
a_mx_yaw(i) = -Xgs(2,1)*sin(LAMBDA(2,1));
a_my_yaw(i) = Xgs(2,i)*cos(LAMBDA(2,1));
% Compute overall missile acceleration
a_mx(i) = a_mx_pitch(i)+a_mx_yaw(i);
a_my(i) = a_my_pitch(i)+a_my_yaw(i);
a_mz(i) = a_mz_pitch(i);
am(:,i) = [a_mx(i)

a_my(i)
a_mz(1)];
% target acceleration vector
at(:,i) = [a_tx(i)
a_ty()
a_tz(i));

% Compute magnitude of the missile’s acceleration

% Generate target’s evasive maneuver (we assume that these accelerations, along
% the three cartesian axis, are estimated using the missile’s image processing
% capabilities)
if TIME(i) >=ti/2 % target starts evasive maneuver
a_tx(i+1) = 3*32.2*sin(GAMMA _t(2,1));

139




a_ty(i+1) = 4¥32 2*cos(GAMMA_t(2,1));
a_tz(i+1) = 3*32 2*cos(GAMMA_t(1.1)),
else
a_tx(i+1) =0.0;
a_ty(i+1) =0.0; .
a_tz(i+1) =0.0;
end
% Compute magnitude of the target’s acceleration
a_t{i+1) = sqrifa_tx(i+1)A2 + a_ty(i+1)A2 + a_tz(i+1)72);
% Update rnissile states
Xm(:,i+1) = PHIm*Xm(:,i)+DELm*am(:,i);
% Update target states
Xt(:,i+1) = PHIt*Xt(:,i)+DELt*at(.,i);
% Update flight path angles
GAMMA_m(,i+1) = [atan2(Xm{6,i+1),sqrt(Xm(2,i+ 1) 2+Xm(4,i+1)72));
' atan2(Xm(4,i+1),Xm(2,i+1))];
GAMMA_t(:,i+1) = [atan2{Xt(6,1+1),5qrt(Xt(2,i+1)A2+Xt(4,i+ 1)A2)),
atan2(Xt(4,i+1).Xt(2,i+1))];
% Update secker states
Xsk(:,i+1) = PHIsk*Xsk(:,i)+DELsk*Usk(:,i),
% Update Guidance System states
Xgs(:,i+1) = FHIgs*Xgs(:,1)+DELgs*Ugs(:,1);
% Limit vaw and piich accelerations to 25 g's
if abs(Xgs(1,i+1)) > 805.0
Xgs(1,i+1) = 805.0 *sign(Xgs(1,i+1)); .
end
if abs(Xgs(2,i+1)) > 805.0
Xgs(2,i+1) = 805.0 *sign{Xgs(2,i+1));
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end
% Update LOS angles
LAMBDAC(,i+1) = [atan2((Xt(5,i+1)-Xm(5,i+1)),sqrt((Xm(1,i+1)-Xt(1,i+1))A2
+(Xm(3,i+1)-Xt(3,1+ 1))A2));
atan2((Xt(3,i+1)-Xm(3,i+1)),(abs(Xm(1,i+1)-Xt(1,i+1))];
Usk(:,i+1) = LAMBDACG,i+1);
LAMBDA_m(:,i+1) = [atan2(Xm(5,i+1),sqrt(Xm(1,i+1)A2+Xm(3,i+1)A2));
atan2(Xm(3,i+1),Xm(1,i+1))];
LAMBDA_t(:,i+1) = [atan2(Xt(5,i+1),sqrt(Xt(1,i+1)A2+Xt(3,i+ 1)A2));
atan2(Xt(3,i+1),Xt(1,i+1))];
% Update Range Information
Rm(i+1) = sqrt(Xm(1,i+1)A2 + Xm(3,i+1)*2 + Xm(5,i+1)2),
Ri(i+1) = sqre(Xe(1,i+1)A2 + Xt(3,i+1)"2 + Xt(5,i+1)A2);
R(:,i+1) = [Xt(1,i+1)-Xm(1,i+1);
Xt(3,i+1)-Xm(3,i+1);
X(S,io+1)-Xen(5,i+1);
sqr((Xt(1,i+1)-Xm(1,i4+ 1)A2+(Xt(3,i+1)-Xm(3,i-+1))A2
+(Xt(5,i+1)-Xm(5,i+1))A2)];
% Update Velocity Information
Vm(i+1) = sqrt(Xm(2,i+ 1) 2+Xm(4,i+1)22+Xm(6,i+1)72);
Vi(i+1) = sqri(Xt(2,i+ )2+ Xt(4,i+ D)A2+ Xt(6,i+1)72);
Vt_pitch(i+1) = Vt(i+1)*cos(LAMBDA(2,i+1)-GAMMA _t(2,i+1));
Vin_pitch(i+1) = Vm(i+1)*cos(LAMBDA(2,i4+1)-CAMMA_m(2,i+1));
Ve_pitch(i+1) = Vm_pitch(i+1)*cos(GAMMA _m(1,i+1)-LAMBDA(1,i+1))
-Vt_pitch(i+1)*cos(GAMMA _t(1,i+1)-LAMBDA(1,i+1));
Vi_yaw(i+1) = Vt(i+1)*cos(GAMMA_t(1,i+1));
Vm_yaw(i+1) = Vm(i+1)*cos(GAMMA _m(1,i+1));

Ve_yaw(i+l) = Vm_yaw(i+1)*cos(GAMMA_m(2,i+1)-LAMBDA(2,i+1))
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-Vt_yaw(i+1)*cos(GAMMA_t(2,i+1)-LAMBDA(2,i+1));
Ve = [Ve_pitch(i+1) 0
0 Ve_yaw(i+1)];
% Time to go
Tgo(i+1) = R(4,i+1)/Vc_pitch(i+1); ‘
% Calculate angles of the target’s acceieration
TETA_t(i+1) = atan2(a_tz(i+1),sqrt(a_tx(i+1) 2+a_ty(i+1)2));
PHI_t(i+1) = atan2(a_ty(i+1),a_tx(i+1));
% Calculate the components of the target’s acceleration normal to the LOS
a_t_pitch(i+1) = -a_t(i+1)*cos(LAMBDA(2,i+1)-PHI_t(i+1))
*sin(LAMBDA(1,i+1)-TETA_t(i+1));
a_t_yaw(i+1) = -a_t(i+1)*cos(TETA_t(i+1))*sin(LAMBDA.(2,i+1)-PHI_t(i+1));
% Update optimal guidance coefficients
k =Tgo(i+1);
n = (6%kA2*(exp(-k)- 1+k))/(2*kA343+6*k-6*kA2-12*k*exp(-k)-3*exp(-2*k));
N=[n 0 '
0 n);
% Components of the Missile’s acceleration normal to the pitch and yaw L.LOS
a_m_pitch(i+1) = Xgs(1,i+1),
a_m_yaw(i+1) = Xgs(2,i+1);
% Update guidance system input
Ugs(:,i+1) = N¥(Vc*[Xsk(2,i+1); Xsk(4,i+1)]
+.5*{a_i_pich{i+1);a_t_yaw(i+1)])
-(1/kA2)*(exp(-k)+k-1)*[a_m_pitch(i+1);a_m_yaw(i+1)]);
% Update Time ’
TIME(i+1) = TIME(i)+dt;
% Check for closest point

if (R(4,i) < R(4,i+1)),break,end
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end;
% Save information for plotting and evaluation
R1(4*ti+1) = R(4.1); % miss distance
Ti(4*ti+1) = t1/2;% starting iime of evasive maneuver (EM)
tgo(4*ti+1) = i*dt-tif2; % time to go until end of flight
if ti ==12.0 % Record information for a target that
% initizlized the evasive maneuver 6 sec after
% the missile entered into the terminal phase
TGO =tgo(49); % of flight
Xseeker = Xsk(:,1:1);
Xgsys = Xgs(:,1:1);
lambda_m = LAMBDA_m(,1:i);
lambda_t = LAMBEDA _t(:,1:i),
lambda = LAMBDAC(, 1:1);
gamma_m = GAMMA _m(;,1:i);
gamma_t = GAMMA_t(;,1:1);

r=R(;,1:1);
vm = Vm(1:i);
vt = Vit(L:1);

vm_pitch = Vm_pitch(1:i);
vt_pitch = Vt_pitch(1:1);
vm_yaw = Vm_yaw(!i:i);
vi_yaw = Vi_yaw(l:i);
ve_pitch = Ve_pitch(l:i),
ve_yaw = Ve_yaw(L:i);
iGO = Tgo(i:1);

a_M = am(,1:i);

a_T =at(:,1:1);
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A_t=a_t(1:i),;

A_m=a_m(l:),

time = TIME(1:1);
end
clear R;
R(, 1) = [Xt(1,1)-Xm(1,1);

Xt(3,1)-Xm(3,1);
Xt(5,1)-Xm(5,1);
sqrt((Xt(1,1)-Xm(1,1))A2+(Xt(3,1)-Xm(3,1))2+(Xt(5,1)-Xm(5,1))72)];

end,
save thesis30343 R1 tgo Ti tGO missile target TGO Xseeker Xgsys lambda_m
lambda_t lambda gamma_m gemma_t r vm vt vin_piich vm_yaw vt_pitch
vi_yaw ve_pitch ve_yaw a_Ma_Ttime A_t A_m
PLOTS
% Miss distance information
piot(Ti,R1),title(‘MISS DISTANCE vs INITIAL TIME, OPTIMAL")
xlabel(‘INITIAL TIME - SEC’),ylabel(‘MISS - FEET")
crint -ips Rlaol
Ipstoepsi R1aol.ps Rlacl.epsi
pause,clg
plot(tgo,R 1),title(‘MISS DISTANCE vs TIME TO GO, OPTIMAL’)
xlavel('TIME TO GO - SEC’),ylabei(‘MISS - FEET’)
print -dps R1bot
Ipstoepsi R1bol.ps R1bol.epsi

pause,clg

% Missile acceleration information
plot(time,A_m),title(*MISSILE ACCELERATION MAGNITUDE vs TIME,
OPTIMAL"




xlabel(“TIME - SEC’),ylabel(‘FEET/SECA2’)

print -dps A_mol

'pstoepsi A_mol.ps A_mol.epsi

pause,clg

plot(time,Xgsys(1,:)),title(‘MISSILE PITCH ACCELERATION vs TIME,
OFTIMAL’)

xlabel(‘TIME - SEC’),ylabel(‘FEET/SECA2’)

print -dps Xgsyslol

'pstoepsi Xgsyslol.ps Xgsyslol.epsi

pause,clg

plot(time,Xgsys(2,:)) title(‘MISSILE YAW ACCELERATION vs TIME,
OPTIMAL")

xlabel(*TIME - SEC"),ylabel(‘FEET/SECA2’)

print -dps Xgsys2o0l

'pstoepsi Xgsys2ol.ps Xgsys2ol.epsi

pause,clg

% Target acceleration information

plot(time,A_t),title(*TARGET ACCELERATION MAGNITUDE vs TIME,

OPTIMAL’)

xlabel(‘TIME - SEC’),ylabel(‘FEET/SECA2*)

print -dps A_tol

'pstoepsi A_tol.ps A_tol.epsi

pause,clg

7 Seeker pitch and yaw angles

plot(time,Xseeker(1,:)) title(‘SEEKEP. PITCH ANGLE vs TIME, OPTIMAL’)

xlabel(‘TIME - SEC’),ylabel(‘RAD’)

print -dps Xseekerlol

'pstoepsi Xseekerlol.ps Xseekerlol.eps:
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pause,clg

plot(time,Xseeker(3,:)),title(‘SEEKER YAW ANGLE vs TIME, OPTIMAL")

xlabel(‘TIME - SEC’),ylabel(‘RAD’)

print -dps Xseeker2ol

'pstoepsi Xseeker2ol.ps Xseeker2ol.epsi

pause,clg

plot(tirne, Xseeker(2,:)),title(‘SEEKER PITCH ANGLE RATE vs TIME,
OPTIMAL’)

xlabel(*TIME - SEC’),ylabel(‘/RAD/SEC")

print -dps Xseeker3ol

Ipstoepsi Xseeker3ol.ps Xseeker3ol.epsi

pause,clg

plot(time,Xseeker(4,:)),title(‘SEEKER YAW ANGLE RATE vs TIME,

OPTIMAL’)

xlabel(*TIME - SEC’),ylabel(‘RAD/SEC’)

print -dps Xseekerdol .

'pstoepsi Xseekerdol.ps Xseekerdol.epsi

pause,clg

% Range information

plot(time,r(4,:)),title(‘RANGE vs TIME, OPTIMAL")

xlabel(‘TIME - SEC’),ylabel(‘FEET")

print -dps rol

'pstoepsi rol.ps rol .easi

pause,clg

% Missile velocity information

plot(time,vm),title(‘MISSILE SPEED vs TIME, OPTIMAL.")

xlabel(‘TIME - SEC’),ylabel(‘FEET/SEC’)

print -dps vmol
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Ipstoepsi vmol.ps vmol.epsi

pause,clg

% Target velocity information

plot(time,vt),title(‘TARGET SPEED vs TIME, OPTIMAL’)
xlabel(“TIME - SEC),ylabel(‘FEET/SEC’)

print -dps vte!

Ipstoepsi vtol.ps vtol .epsi

pause,clg

% Closing velocity information

plot(time,vc_pitch),title(‘PITCH CLOSING SPEED, OPTIMAL")
xlabel(‘TIME - SEC’),ylabel(‘FEET/SEC")

print -dps vclol

Ipstoepsi velol.ps velol.epsi

pause,clg

plot(time,vc_yaw),title(“YAW CLOSING SPEED vs TIME, OPTIMAL’)
xlabel(‘TIME - SEC’),ylabel(‘FEET/SEC’)

print -dps vc2ol

Ipstoepsi vc2o01l.ps ve2ol .epsi

pause,clg
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